(四)人工智能应用--深度学习原理与实战--Windows系统Tensorflow平台搭建

本文详细介绍了在Windows系统下如何搭建TensorFlow2.x深度学习平台,包括Anaconda的安装、TensorFlow的安装配置,以及Cuda和cudnn的安装与验证。内容涵盖主流深度学习框架对比,重点讲解了GPU支持的设置,确保安装成功。
摘要由CSDN通过智能技术生成

TensorfLow是由谷歌团队推出的基于数据流图的开源数值计算平台,是目前企业应用最为广泛的深度学习框架。本章我们将学习在Windows操作系统进行Tensorflow的安装及基于NVIDIA GPU的Cuda(GPU并行计算框架)、cudnn(深度学习加速平台】的安装配置。

主要学习内容:

  1. Windows平台下安装Python发行版Anaconda
  2. Windows平台下安装TensorfLlow及Cuda、cudnn的安装配置
  3. 编写测试代码,测试安装是否成功

一、了解主流的深度学习框架

1.TensorfLow(简称TF,2.×版本已整合Keras)

GoogLe推出的基于数据流图的深度学习平台,2.版本整了Keras作为官方推荐的高层API,大大简化了神经网络搭建过程。目前TF是应用最广泛的深度学习平台,开发文档十分详尽,相关技术社区非常活跃。

2.Pytorch(已合并Caffe2)

Pytorch是Facebook在深度学习框架Torch的基础上使用Python重写的深度学习平台,Pytorch拥有丰富的API,可以快速完成模型的搭建与训练,代码简洁易读,其简洁高效广受研究人员的喜爰,在科研领域使用比较广泛,文档支持比较详细。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张小凡vip

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值