作为使用最广泛的深度学习框架,TensorfLow支持Windows、Linux、MacOs等多种操作系统。Linux系统作为服务器部署环境十分常见,本章我们将学习在Linux操作系统下Tensorflow的安装及基于NVIDIA GPU的Cuda(GPU并行计算框架)、cudnn(深度学习加速平台)的安装配置。
主要学习内容:
- Linux平台下安装Python发行版Anaconda
- Linux平台下安装Tensorflow及cuda、cudnn的安装配置
- 编写测试代码,测试安装是否成功
一、安装Anaconda
Python环境建议使用Anaconda发行版,它是在数据科学和人工智能领域最常用的Python发行版本,整合了包括Numpy、Pandas、MatplotLib在内的大量常用的工具库,并整合了Jupyter Notebook。

第1步、进入Anaconda官方网站,下载Linux系统下所需版本的Anaconda,按以下步骤安装:
(1) 打开用户终端Terminal。
(2) 输入cd命令,进入Anaconda下载文件所在的位置。
(3) 输入bash命令,运行.sh文件。
本文详细介绍了如何在Linux系统中搭建Tensorflow深度学习环境,包括安装Anaconda、Tensorflow、Cuda和cudnn,并提供了每一步的详细操作指南,确保GPU支持和兼容性,最后通过测试代码验证安装成功。
订阅专栏 解锁全文
5万+

被折叠的 条评论
为什么被折叠?



