Tensorflow名称中的Tensor即张量,不仅仅是Tensorflow,几乎所有的深度学习平台都以张量为基本的数据结构。简单来说,张量就是多维数组,本质上是一种数据容器,它可以有任意维度,比如矩阵就是二维张量(二维数组)。
深度学习中使用张量来表示数据,计算图是由张量和张量运算形成的运算结构图,如果把张量作神经网络的原料的话,计算图就相当于神经网络这台机器的齿轮,它用图的形式来表达计算过程-----即数据的计算和流动。Tensorflow名称为张量(Tensor)的流动(flow) 。
主要学习内容:
1)理解和掌握张量的概念、维度(轴 axis)
2)掌握常用数据类型的张量表示,包括:
①向量数据
②时间序列数据
③图像数据
④视频数据
3) 理解和掌握计算图的作用及结构
一、 理解张量的相关概念
在Python中,通常用numpy来存储张量,numpy是个常用的科学计算包,其核结构是Ndarray (即多维数组)。在Tensorflow中的张量Tensor可以和Numpy数组相互转换。
0维张量(标量):
只含有1个数字的张量叫做0维张量,也叫标量。如果把张量比喻成水桶,0维度张量就是只有1滴水的水桶。
本文介绍了张量作为深度学习基本数据结构的概念,包括不同维度的张量及其在数据表示中的作用,如向量、时间序列、图像和视频数据。同时,文章阐述了计算图的重要性和结构,它是数据计算和流动的图形表示,有助于提升大规模计算的效率。通过实例解释了张量的形状改变和不同类型数据的张量表示。最后,提到了TensorFlow中的张量和计算图功能,以及Keras在神经网络建模中的应用。
订阅专栏 解锁全文
516

被折叠的 条评论
为什么被折叠?



