(七)人工智能应用--深度学习原理与实战--使用Keras搭建序贯式模型

本文介绍了如何使用Keras API搭建包含全连接层(Dense)的神经网络,涵盖序贯模型的构建、层的添加方法以及参数计算。通过实例展示了在Keras中创建和训练一个简单的神经网络,强调了全连接层的特点和在分类中的作用。
摘要由CSDN通过智能技术生成

Tensorflow2推荐使用Keras来搭建神经网络,作为一款优秀的高层API,Keras目前已经被集成到TensorfLow体系中,借助Keras我们可以模块化、高效地构建神经网络。

Keras构建神经网络的基本组件是“层”(Layer),我们可以根据需求,将不同的层结合在一起形成一个神经网络,并且可以很方便地编译、训练和预测。

本章节通过案例理解和掌握Keras API的基本使用过程。
学习的内容如下:

1)理解Keras中的层(Layers)
2)理解序贯模型和函数式模型
3)理解全连接层(也叫密实层、Dense层)的特点和用途
4)使用Keras搭建堆叠式(序贯式)神经网络模型
5)理解和掌握全连接层参数个数的计算方法

理解Keras中“层”(Layers)的概念。Keras使用“层”作为神经网络的基本组件,提供了不同用途的多种类型的层(Layers)。
全连接层(Dense层、也叫密实层)是我们接触到的第一种层,需要理解它的特点和用途,并掌握全连接层参数数量的计算方法。

理解序贯模型和函数式模型的特点和区别。

理解和掌握使用Keras API构建序贯式神经网络、并添加网络层(本任务只采用全连接层)的方法。

一、理解Keras中的层(Layers)

前面我们已经知道,神经网络是由多个层组成的数学框架。在TensorfLow的Keras API,每个层被抽象成一个组件,神经网络的搭建

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张小凡vip

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值