Tensorflow2推荐使用Keras来搭建神经网络,作为一款优秀的高层API,Keras目前已经被集成到TensorfLow体系中,借助Keras我们可以模块化、高效地构建神经网络。
Keras构建神经网络的基本组件是“层”(Layer),我们可以根据需求,将不同的层结合在一起形成一个神经网络,并且可以很方便地编译、训练和预测。
本章节通过案例理解和掌握Keras API的基本使用过程。
学习的内容如下:
1)理解Keras中的层(Layers)
2)理解序贯模型和函数式模型
3)理解全连接层(也叫密实层、Dense层)的特点和用途
4)使用Keras搭建堆叠式(序贯式)神经网络模型
5)理解和掌握全连接层参数个数的计算方法
理解Keras中“层”(Layers)的概念。Keras使用“层”作为神经网络的基本组件,提供了不同用途的多种类型的层(Layers)。
全连接层(Dense层、也叫密实层)是我们接触到的第一种层,需要理解它的特点和用途,并掌握全连接层参数数量的计算方法。
理解序贯模型和函数式模型的特点和区别。
理解和掌握使用Keras API构建序贯式神经网络、并添加网络层(本任务只采用全连接层)的方法。
一、理解Keras中的层(Layers)
前面我们已经知道,神经网络是由多个层组成的数学框架。在TensorfLow的Keras API,每个层被抽象成一个组件,神经网络的搭建
本文介绍了如何使用Keras API搭建包含全连接层(Dense)的神经网络,涵盖序贯模型的构建、层的添加方法以及参数计算。通过实例展示了在Keras中创建和训练一个简单的神经网络,强调了全连接层的特点和在分类中的作用。
订阅专栏 解锁全文
1092

被折叠的 条评论
为什么被折叠?



