(八)人工智能应用--深度学习原理与实战--前馈神经网络机制解析

本文详细介绍了前馈神经网络(FNN)的基本原理,包括感知机、前馈与反向传播机制、权重与偏移量、激活函数等关键概念。FNN是一种单向多层网络,无反馈,常用于图像识别和自然语言处理。重点讲解了激活函数如Sigmoid、Tanh和ReLU,以及它们在深层网络中的应用。
摘要由CSDN通过智能技术生成

前馈神经网络(Feedforward Neural Network,FNN),简称前馈网络,是使用最广泛的神经网络之一,前馈神经网络是一种简里的单向多层网络,各神经元分层排列。每个神经元只与前一层的神经元相连,接收前一层的输出,并输出给下一层,各层间没有反馈,因此也叫全连接神经网络。经典的卷积神经网络(CNN)和循环神经网络(RNN)都是属于前馈网络。

本章节理解和掌握前馈神经网络的关键机制。

请添加图片描述

学习的内容:
1)理解和掌握前馈神经网络的特征
2) 理解最简单的前馈网络——感知机原理
3)理解和掌握前馈及反向传播机制
4) 理解神经元的权重及偏移量参数
5)了解激活函数的作用及类型

一、认识前馈神经网络的特点

前馈神经网络采用单向多层结构。其中每一层包含若干个神经元,每个神经元可以接收前一层神经元的信号,并产生输出到下一层。第0层叫输入层,最后1层叫输出层,具他中间层叫做隐藏层,隐层可以是一层,也可以是多层。

整个前馈网络中无反馈,信号从输入层向输出层单向传播,可用一个有向无环图表示,如图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张小凡vip

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值