前馈神经网络(Feedforward Neural Network,FNN),简称前馈网络,是使用最广泛的神经网络之一,前馈神经网络是一种简里的单向多层网络,各神经元分层排列。每个神经元只与前一层的神经元相连,接收前一层的输出,并输出给下一层,各层间没有反馈,因此也叫全连接神经网络。经典的卷积神经网络(CNN)和循环神经网络(RNN)都是属于前馈网络。
本章节理解和掌握前馈神经网络的关键机制。

学习的内容:
1)理解和掌握前馈神经网络的特征
2) 理解最简单的前馈网络——感知机原理
3)理解和掌握前馈及反向传播机制
4) 理解神经元的权重及偏移量参数
5)了解激活函数的作用及类型
一、认识前馈神经网络的特点
前馈神经网络采用单向多层结构。其中每一层包含若干个神经元,每个神经元可以接收前一层神经元的信号,并产生输出到下一层。第0层叫输入层,最后1层叫输出层,具他中间层叫做隐藏层,隐层可以是一层,也可以是多层。
整个前馈网络中无反馈,信号从输入层向输出层单向传播,可用一个有向无环图表示,如图。
本文详细介绍了前馈神经网络(FNN)的基本原理,包括感知机、前馈与反向传播机制、权重与偏移量、激活函数等关键概念。FNN是一种单向多层网络,无反馈,常用于图像识别和自然语言处理。重点讲解了激活函数如Sigmoid、Tanh和ReLU,以及它们在深层网络中的应用。
订阅专栏 解锁全文
6万+

被折叠的 条评论
为什么被折叠?



