(九)人工智能应用--深度学习原理与实战--前馈神经网络实现MNST手写数字识别

本文介绍了使用Keras进行深度学习,实现MNIST手写数字识别的全过程。从下载数据集到搭建前馈神经网络,再到模型训练、评估和自定义图片识别,详细阐述了每个步骤,并强调了数据预处理和模型编译的重要性。
摘要由CSDN通过智能技术生成

目标: 识别手写体的数字,如图所示:

请添加图片描述

学习内容:
1、掌握MNIST数据集的加载和查看方法
2、熟练掌握Keras建立前馈神经网络的步骤【重点】
3、掌握模型的编译及拟合方法的使用,理解参数含义【重点】
4、掌握模型的评估方法
5、掌握模型的预测方法
6、掌握自定义图片的处理与预测

实现步骤:
1)下载MNIST数据集
2)加载、查看数据集
3)数据预处理、建立前馈神经网络模型
4)模型的编译、训练及评估
5)识别测试集上的图片
6)识别自定义的手写图片

一、下载MNIST数据集

下载完后建议放在操作系统当前用户的.keras/datasets/目录下,加载程序将优先从该目录中加载。也可以在加载时指定具他路径,如果程序找不到数据集,则会从服务器下载。

MNIST是经典的手写数字图片数据集,它采集了250个人的70000张手写图片,其中训练集60000张,测试集10000张。图片为28*28的灰度图像,数据集总大小约为11M。

下载地址:
https://s3.amazonaws.com/img-datasets/mnist.npz<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张小凡vip

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值