目的:将训练好的模型保存为文件,下次使用时直接加载即可,不必重复建模训练。
神经网络模型训练好之后,可以保存为文件以持久存储,这样下次使用时就不重新建模训练,直接加载就可以。TensorfLow提供了灵活的模型保存方案,既可以同时保存网络结构和权重(即保存全模型),也可以仅保存权重或网络结构。本章节通过案例来学习和掌握模型的多种保存方法。
学习内容:
a)全模型的保存与加载、使用
b)权重数据的保存及加载
c)网络结构的保存及加载
学习目标:
掌握全模型信息的保存与加载方法
掌握权重数据的保存及加载方法
掌握网络结构的保存及加载方法
方案一:保存全模型(网络结构+权重+编译配置)
1、搭建并训练好神经网络模型
from tensorflow.keras import datasets,layers,models
model = models.Sequential() # 定义模型对象
model.add(layers.Dense(512,activation = 'relu', input_shape = (28*28,))) # 输入层
model.add(layers.Dense(10,activation = 'softmax')) #输出层
本文介绍了TensorFlow中模型的保存与加载,包括全模型(网络结构+权重+编译配置)、仅保存权重以及仅保存网络结构三种方案。通过案例展示了如何使用save()方法保存模型,load_model()函数加载模型,以及利用json文件存储和恢复网络结构。强调了模型保存与加载在实际应用中的重要性。
订阅专栏 解锁全文
2889

被折叠的 条评论
为什么被折叠?



