(十)人工智能应用--深度学习原理与实战--模型的保存与加载使用

本文介绍了TensorFlow中模型的保存与加载,包括全模型(网络结构+权重+编译配置)、仅保存权重以及仅保存网络结构三种方案。通过案例展示了如何使用save()方法保存模型,load_model()函数加载模型,以及利用json文件存储和恢复网络结构。强调了模型保存与加载在实际应用中的重要性。
摘要由CSDN通过智能技术生成

目的:将训练好的模型保存为文件,下次使用时直接加载即可,不必重复建模训练。

神经网络模型训练好之后,可以保存为文件以持久存储,这样下次使用时就不重新建模训练,直接加载就可以。TensorfLow提供了灵活的模型保存方案,既可以同时保存网络结构和权重(即保存全模型),也可以仅保存权重或网络结构。本章节通过案例来学习和掌握模型的多种保存方法。

学习内容:
a)全模型的保存与加载、使用
b)权重数据的保存及加载
c)网络结构的保存及加载

学习目标:
掌握全模型信息的保存与加载方法
掌握权重数据的保存及加载方法
掌握网络结构的保存及加载方法

方案一:保存全模型(网络结构+权重+编译配置)

1、搭建并训练好神经网络模型

from tensorflow.keras import datasets,layers,models

model = models.Sequential() # 定义模型对象

model.add(layers.Dense(512,activation = 'relu', input_shape = (28*28,))) # 输入层

model.add(layers.Dense(10,activation = 'softmax')) #输出层

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张小凡vip

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值