(十一)人工智能应用--深度学习原理与实战--实现泰坦尼克号生存者预测案例Titanic Survival

本文介绍了利用深度学习预测泰坦尼克号乘客生存情况的案例,包括数据预处理、全连接网络模型构建、训练与评估。通过数据导入、特征工程、模型训练、可视化和预测,掌握二分类问题的解决流程。
摘要由CSDN通过智能技术生成

泰坦尼克号生存者预测(Titanic Survival)是谷歌Kaggle人工智能大赛中的经典亲例。本任务要求根据给定的1300余位乘客的特征(姓名、性别、年龄、舱位等】及幸存情况(0-死亡,1-幸存】建立神经网络模型,能够较巿准确地预测测试集中乘客的幸存情况。

主要流程为:

  1. 数据的导人及预处理
  2. 建立全连接网络蟆型
  3. 模型的训练与可视化(MatplotLib)
  4. 评估、预测

通过对本案例的学习,可以达到以下目的:

1)回顾和掌握数据预处理方法
2) 熟练掌握基于SequentiaL模式,建立全连接神经网络模型的方法
3) 掌握模型的编译与训练方法
4) 掌握训练过程可视化方法(使用MatplotLib)
5) 掌握模型的评估与预测方法

一、熟悉数据集

数据集下载地址:

https://www.kaggle.com/c/titanic

请添加图片描述

主要字段说明(其余字段如家庭地址等对建幔意义不大,省略)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张小凡vip

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值