(十二)人工智能应用--深度学习原理与实战--模型编译及训练参数的选择

本文详细介绍了深度学习中模型编译与训练的重要参数,包括优化器如梯度下降及其改进算法,损失函数如回归和分类损失,以及评价指标。理解并选择合适的优化器、损失函数和评价指标对于提升模型性能至关重要。同时,文章还讨论了训练参数如学习率、验证集的使用方法。
摘要由CSDN通过智能技术生成

神经网络模型的编译实际上是为网络指定几个非常重要的运行参数,包括优化器、损失函数(误差函数】和评价指标,这三者也代表着神经网络的核心运行机制----通过损失函数来计算网络误差、通过优化器来调整网络参数以降低误差、通过评价指标来衡量网络的性能。神经网络训练时除了需要指定训练集数据和标签、训练迭代次数epochs、批尺寸batch_size外,还可以通过指定验证集在训练过程中进行验证。

掌握神经网络编译和训练常用参数的类型和作用、理解其区别与选择原则,对于提升模型性能、优化神经网络等具有十分重要的意义。

主要流程为:

a)常用优化器(optimizer)的类型及选择
b)常用损失函数(loss)的类型选择
c)不同任务类型下,评价指标(metrics)的选择
d)验证集参数的使用

通过对本案例的学习,可以达到以下目的:

1)理解和掌握常用优化器的类型及选择
2) 理解和掌握常用损失函数的类型及选择
3) 掌握不同任务下,评价指标的选择
4) 掌握训练时验证集数的使用

一、认识常用的优化器(optimizer)

模型编译时的“optimizer”参数即是指定优化器。优化器的作用前面已经讲过:它根据损失函数(由Loss参数指定)计算出的误差,从后向前地调整神经网络各层的参数、达到降低误差的目的。即优化器的作用是在训练过程中优化网络模型的参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张小凡vip

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值