详解用python实现简单的遗传算法

详解用python实现简单的遗传算法 今天整理之前写的代码,发现在做数模期间写的用python实现的遗传算法,感觉还是挺有意思的,就拿出来分享一下。 首先遗传算法是一种优化算法,通过模拟基因的优胜劣汰,进行计算(具体的算法思路什么的就不赘述了)。大致过程分为初始化编码、个体评价、选择,交叉,变...

2019-03-12 16:25:59

阅读数 131

评论数 2

概率图模型之:贝叶斯网络

版权声明:本文为博主原创文章,转载请声明出处。 https://blog.csdn.net/GnahzNib/article/details/70244175 1、贝叶斯定理 P(A∣B)=P(A)P(B∣A)P(B) P(A∣B)=P(A)P(B∣A)P(B) P(A|B)是已知B发生后A的条件...

2019-03-11 21:45:20

阅读数 97

评论数 0

浅谈张量分解(五):稀疏张量的CP分解

在前面的文章中,我们已经讨论了稀疏张量的Tucker分解,并介绍了如何采用梯度下降训练出一个合理的分解结构,与Tucker分解略有不同,这篇文章将介绍在数学表达式上更为简洁的CP分解,同时讨论如何利用梯度下降训练出稀疏张量的CP分解结构。 需要注意的是,本文在撰写过程中尽量避开了繁琐的数学推导,...

2019-03-08 11:34:52

阅读数 389

评论数 0

浅谈张量分解(四):外积、Kronecker积和张量积

在维基百科上,外积(Outer product - Wikipedia)被解释为: In linear algebra, an outer product is the tensor product of two coordinate vectors, a special case of the...

2019-03-08 11:34:10

阅读数 1306

评论数 1

浅谈张量分解(三):如何对稀疏矩阵进行奇异值分解?

矩阵的奇异值分解(singular value decomposition,简称SVD)是线性代数中很重要的内容,我们可以很轻松地对矩阵进行奇异值分解。事实上,高阶张量也可以进行奇异值分解,并且习惯上称高阶张量的奇异值分解为高阶奇异值分解(higher-order singular value d...

2019-03-08 11:33:18

阅读数 316

评论数 0

浅谈张量分解(二):张量分解的数学基础

近年来,张量分解技术在数据挖掘领域得到了很好的应用,但关于张量的一些计算却与我们所熟悉的线性代数大相径庭,同时,张量计算相比以向量和矩阵计算为主导的线性代数更为抽象,这使得大量读者可能会觉得关于张量的内容很“难啃”。当然,就线性代数和多重线性代数而言,主流的观点将涉及到张量计算的内容归为“多重线性...

2019-03-08 11:31:47

阅读数 606

评论数 0

浅谈张量分解(一):如何简单地进行张量分解?

在介绍张量分解(tensor decomposition)之前,我们可能需要先简单地了解一下张量是什么,然后再考虑张量分解有什么用途,并如何像稀疏矩阵分解(matrix decomposition/factorization)一样来对稀疏张量进行分解。 从初中到大学,我们接触最多的可能只是标量(...

2019-03-08 11:30:52

阅读数 491

评论数 0

【Keras】Keras入门指南

https://www.jianshu.com/p/e9c1e68a615e 参考资料 keras中文文档(官方) keras中文文档(非官方) 莫烦keras教程代码 莫烦keras视频教程 一些keras的例子 Keras开发者的github keras在imagenet以及V...

2019-03-08 11:30:14

阅读数 554

评论数 0

空间深度学习——ConvLSTM原理及其TensorFlow实现

转载于深度学习每日摘要,ConvLSTM原理及其TensorFlow实现 本文参考文献 Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting https://blog.csdn....

2019-03-04 11:24:49

阅读数 110

评论数 0

哈夫曼(huffman)树和哈夫曼编码

原文:https://www.cnblogs.com/kubixuesheng/p/4397798.html 哈夫曼树 哈夫曼树也叫最优二叉树(哈夫曼树) 问题:什么是哈夫曼树? 例:将学生的百分制成绩转换为五分制成绩:≥90 分: A,80~89分: B,70~79分: C,60~69分...

2019-03-04 11:15:42

阅读数 42

评论数 0

对与RNN的两种不同写法

对与RNN的两种不同写法: def add_cell(self): lstm_cell = tf.contrib.rnn.BasicLSTMCell(self.cell_size, forget_bias=1.0, ...

2019-03-04 10:09:55

阅读数 63

评论数 1

提示
确定要删除当前文章?
取消 删除