1730-数字三角形问题(动态规划)java

Problem Description
给定一个由n行数字组成的数字三角形如下图所示。试设计一个算法,计算出从三角形的顶至底的一条路径,使该路径经过的数字总和最大。
在这里插入图片描述
对于给定的由n行数字组成的数字三角形,计算从三角形的顶至底的路径经过的数字和的最大值。
Input
输入数据的第1行是数字三角形的行数n,1≤n≤100。接下来n行是数字三角形各行中的数字。所有数字在0…99之间。
Output
输出数据只有一个整数,表示计算出的最大值。
Sample Input
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
Sample Output
30

思路是:需要两个数组,一个是接收输入得数字a,另一个用于储存当前最大路径b
第一层不用比较直接b[0][0] = a[0][0];
第二层有两种b[1][0] = a[0][0] + a[1][0] ; b[1][1] = a[0][0] + a[1][1];
到了第三层的时候开始出现选择的情况,要选择上一层的最大得路径
在这里插入图片描述
但是对于最边边得只能有一条路可以走,中间的需要选择一下上一层中最大的路径。

直到最后走完全部,全部的路径结果都存储在b中了,
只需要从中取出最大值即可。

import java.util.Scanner;

/*
 * 动态规划
 */
public class Main {
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		int n = sc.nextInt();
		int a[][] = new int[n][n];
		int b[][] = new int[n][n];
		
		int max;
		for(int i =0;i<n;i++) {
			for(int j = 0;j<=i;j++) {
				a[i][j] = sc.nextInt();
			}
		}
		b[0][0] = a[0][0];
        for(int i = 1;i<n;i++){
            for(int j = 0;j<=i;j++){
                if(j==0)//左侧,直接相加
                    b[i][j] = b[i-1][j]+a[i][j];
                else if(j==i)//右侧,直接相加
                    b[i][j] = b[i-1][j-1]+a[i][j];
                else//中间,需要用min函数求经过这条路的最短路径
                    b[i][j] = Math.max(b[i-1][j-1],b[i-1][j])+a[i][j];
            }
        }
 
        max = b[n-1][0];
        for(int i = 1;i<b[n-1].length;i++){
            if(b[n-1][i]>max)
                max = b[n-1][i];
        }
        System.out.println(max);
	}
}

参考:
戳戳戳进去~~

  • 0
    点赞
  • 0
    评论
  • 4
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值