问题描述:给一个图G=<V,E>,问如何判断这个图中是否存在回路?请给出至少3中方法
分析:
方法1:利用减枝的方法,如果G为有向图:
1)首先删除入读为0的点,并且将对应的和该点相连的点的入读-1。(可以用一个数组表示节点被删除的状态)
2)重复过程1),直到没有入读为0的点,如果还有没被删除的节点,则该有向图一定存在回路
如果G为无向图:
1)首先删除所有度数<=1的点,然后将与这些点相连的所有点的度数-1,然后将所有度数为1的点加入队列中
2)对队列中的每个点,重复过程1),如果还有没被删除的节点,那么证明该图一定存在回路。
方法2:(有向图)利用拓扑排序
1)首先利用DFS进行拓扑排序,最后生成一个拓扑序链表,然后为每个节点设置一个是否被访问过标记,用Visit数组
2) 遍历这个链表,对每个节点v,设置visit[v]=1,如果判断如果存在与该节点相邻的节点u,使得Visit[u]=1,那么证明存在回边,这图中一定存在圈。
方法3:(无向图而言)利用BFS(利用算法导论上BFS的版本,每个节点有一个color属性,标记节点的颜色:“白”、“灰”、“黑”)
1)直接利用BFS进行遍历,在判断当前节点的相邻的节点时,附加一个判断:如果这个节点的颜色为“灰色”,则return false
2)遍历完所有的节点,返回true
方法4:(无向图而言)还是利用BFS,在遍历过程中,为每个节点标记一个深度deep[],如果存在某个节点为v,除了其父节点u外,还存在与v相邻的节点w使得deep[v]<=deep[w]的,那么该图一定存在回路。
方法5:(无向图而言)用BFS或DFS遍历,最后判断对于每一个连通分量当中,如果边数m>=节点个数n,那么改图一定存在回路。因此在DFS或BFS中,我们可以统计每一个连通分量的顶点数目n和边数m,如果m>=n则return false;直到访问完所有的节点,return true.
问题扩展:如何求出一个图中所有简单回路的个数,并打印出这些简单回路?