

Spring 核心技术解析【纯干货版】- XVII:Spring 网络模块 Spring-WebFlux 模块精讲
Spring WebFlux 是 Spring Framework 5 引入的响应式 Web 框架,旨在通过非阻塞、异步编程模型解决高并发场景下的性能瓶颈。它基于 Reactive Streams 规范,采用 Project Reactor 作为核心库,支持背压(Backpressure)机制,适用于 I/O 密集型任务(如微服务通信、实时数据流处理)。与传统 Spring WebMvc 的同步阻塞模型不同,WebFlux 通过事件循环(Event Loop)和少量线程高效处理请求,显著提升系统吞吐量。


Python爬虫(47)Python异步爬虫与K8S弹性伸缩:构建百万级并发数据采集引擎
本文提出了一种基于Python异步爬虫与K8S弹性伸缩的分布式数据采集方案。针对金融风控领域面临的爬虫延迟(传统系统超12小时)、反爬对抗(IP限制10RPM)和成本问题(资源浪费40%),该方案通过优化异步引擎(aiohttp+uvloop)实现2000+并发连接,结合K8S智能扩缩容(HPA+Cluster Autoscaler)动态调整计算资源。生产数据显示,系统将数据采集延迟缩短至15分钟,峰值QPS达800+,错误率降至0.5%,同时通过预测式扩容使月成本降低62%,构建了高时效、低成本、强抗反爬


Python爬虫(54)Python数据治理全攻略:从爬虫清洗到NLP情感分析的实战演进
电商评论数据治理与分析系统实践 某跨境电商平台面临数据质量困境(重复、缺失、异常值等),导致分析项目失败率高达63%。本文构建基于Python的智能处理系统: 分布式爬虫:采用多线程并发抓取,自动处理异常重试,输出标准化评论数据 深度清洗:结合精确字段去重与语义相似度检测(Sentence-BERT模型),解决文本级重复问题 质量验证:通过Pandas Profiling生成数据画像,量化缺失值、异常评分等关键指标 系统目标将可用数据占比从62%提升至98%,为后续情感分析(准确率85%+)奠定基础,有效破

