yolov10主要特点

在我们探讨YOLOv10之前,让我们回顾一下YOLO的发展历程。YOLO在实时目标检测领域一直是先驱,兼顾速度和准确性。从YOLOv1到YOLOv9,每个版本在架构、优化和数据增强方面都引入了显著的改进。然而,随着模型的发展,某些限制依然存在,特别是对后处理依赖非极大值抑制(NMS),这会减慢推理速度。YOLOv10正面解决了这些挑战,使其成为实时应用中稳健高效的模型。

YOLOv10的3大新特性

1. 无NMS训练

YOLOv10的一大亮点是其无NMS训练。传统的YOLO模型使用NMS来过滤重叠的预测,这增加了推理延迟。YOLOv10引入了一种双重分配策略,消除了NMS的需求,从而实现了更快、更高效的目标检测。🏎️

双重分配策略解释:

  • 一对多分配:在训练过程中使用,以提供丰富的监督信号。

  • 一对一分配:在推理过程中使用,以避免冗余预测。

通过使用一致的匹配度量协调这两种策略,YOLOv10在不牺牲性能的情况下实现了高效率。

2. 整体效率-准确性驱动设计 

YOLOv10采用了一种全面的模型设计方法,优化了各种组件以提高效率和准确性。以下是一些关键创新:

 

性能和效率:双赢组合

结果表明,YOLOv10在准确性和速度方面均优于其前代和其他最新模型。例如,YOLOv10-S(一个较小的变体)比RT-DETR-R18快1.8倍,性能相似,且参数量减少了2.8倍。与YOLOv9-C相比,YOLOv10-B(一个平衡的变体)延迟减少了46%,参数量减少了25%,同时保持了相同的性能水平。

41817c590a384f4aa97e74c30dd89572.webp

以下是YOLOv10与其他模型的快速对比:YOLOv10-S:46.3 AP,2.49毫秒延迟YOLOv10-M:51.1 AP,4.74毫秒延迟YOLOv10-L:53.2 AP,7.28毫秒延迟YOLOv10-X:54.4 AP,10.70毫秒延迟这些改进使YOLOv10成为实时目标检测任务的首选,从自动驾驶到智能监控。

  • 轻量化分类头:通过使用深度可分离卷积,减少分类头的计算开销,而不显著影响性能。

  • 空间-通道解耦下采样:通过分离空间缩减和通道增加操作,增强下采样效率,减少信息损失。

  • 秩引导块设计:根据模型不同阶段的内在冗余,调整构建块的复杂度,确保参数的最佳利用。

    3. 大核卷积和部分自注意力

    为了进一步提高准确性,YOLOv10集成了大核卷积和部分自注意力(PSA)模块。这些组件提高了模型捕捉全局信息的能力,同时保持计算效率。

  • 大核卷积:在较深阶段有选择地使用,以扩大感受野而不显著增加I/O开销。

  • PSA模块:以成本效益的方式引入自注意力,提升模型学习全局表示的能力。

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

偶尔摸点鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值