【推荐理由】陈希孺先生的作品,读起来字字玑珠,条理清晰,并且会用朴素的语言来演绎一个复杂的道理,收放自如,他的书本本精品,值得收藏,这年头大V太多,大师太少。
小插曲:有一日和太太讨论,我买了全套陈希孺的文集还不到200元,可以阅读终身,尔随便一个衣服配件就大大超过200元,也只能穿一季,太浪费了。太太回曰:明天你穿本书出门。
中美两本有影响力数理统计学教材的对比及其启示
天津财经大学 龚凤乾
内容提要: 本文对比已故陈希孺院士所著《高等数理统计学》及美国Bickel等人所著《数理统计:基本思想与专题,上卷》。全文共分五部分:第一部分“中美两本数理统计学教材内容对比”,第二部分“中美两本数理统计学教材开篇部分对比”,第三部分“两本教材关于统计推断与统计决策的看法择要”,第四部分“中美两本数理统计学教材习题安排一览”,第五部分“结语”。通过勾勒这两本教材的不同凡响之处,本文希望能引起读者对它们的关注,所提包括打好数学基础在内的七条阅读建议有一定的参考价值。
关键词:统计模型;充分统计量;统计推断;统计决策
A Comparison Between Two Influential Textbooks of Mathematical Statistics: Tentative Conclusions and Suggestions
Abstract: This paper makes a fairly thorough comparison between two quite influential mathematical statistics textbooks, i.e. An Advanced Course in Mathematical Statistics by the late academician of the Academy of Sciences of China, professor Chen Xiru, and Mathematical Statistics: Basic Ideas and Selected Topics, Vol. 1. (2nd Ed) by Peter J. Bickel et al. The former was published by University of Science and Technology of China in 1999, and the latter by China Statistics Press in 2004. There are five parts in this paper, namely, Part 1 Comparison Between the Contents of the Two Textbooks, Part 2 Comparison Between the First Chapters of the Two Textbooks, Part 3 Issues About Statistical Inference and Statistical Decision of the two textbooks, Part 4 Questions and Problems of the two textbooks, and Part 5 Conclusions and Suggestions. The purpose of it is to draw due attention of the general reader toward these two books, and make the reader get interested in reading them. Seven suggestions are made at the end of the paper.
Key Words: Models of Statistics, Sufficient Statistic(s), Statistical Inference, and Statistical Decision
一、 中美两本数理统计学教材内容对比
陈希孺先生将《高等数理统计学》①定位为“基于测度论的数理统计学基础教科书”,表明本书侧重从测度论的角度阐述所论统计理论与方法的性质。本书32开、共719页,其中,正文部分383页,附录5页,习题及习题提示331页。全书分为8章:第一章“预备知识”,着重讲述统计模型以及统计问题赖以解决的表达形式(即统计量)。第二章“无偏估计与同变估计”,讨论的主题是从Wald统计决策理论的观点来研究参数的点估计:即引进某种要求(无偏、同变)以限制所考虑的估计量的类,再在该缩小了的估计类中,找出一致最优估计量。第三章“Bayes估计与Minimax估计”,与第二章相反,本章不再限制估计量的类,而是降低“一致最优”的要求,代之以一种相对风险函数而言的更宽泛的整体性指标(因在一致最优准则下,风险函数要与参数θ作逐点比较)。第四章“大样本估计”,讨论点估计若干基本的大样本性质,以及某些重要的、以大样本性质为依托的估计(如极大似然估计)。第五章“假设检验的优化理论”,讨论可转化为数学优化问题且具有小样本性质假设检验的理论与方法(熟知,无论按Neyman-Pearson所建立的统计推断理论或按Wald所建立的统计决策理论,假设检验问题都可以化为一个数学优化问题)。第六章“大样本检验”,讨论如何从直观的想法出发,设法构造一个或一些看上去合理的检验法,故检验临界值的确定,主要依赖检验统计量的渐近分布,属于大样本检验的范围。第七章“区间估计”,叙述区间估计的基本理论:由于问题的复杂性,本章对流行的Neyman置信区间理论、Fisher的信仰推断(Fiducial Inference)及Bayes 推断都作了讨论,对统计决策观点下的区间估计以及区间估计的大样本方法也有评价。第八章“线性统计模型”,讨论一类在应用上很重要、其线性结构又可以精确定义的所谓“线性统计模型”的理论基础。
综上可知,除第一章“预备知识”及第八章“线性统计模型”外,本书主要讨论几种基本统计推断形式(点估计及区间估计、假设检验)的大小样本理论和方法。所有这些,对于提高我们的统计学理论素养,增强阅读当代统计学专著、文献的能力,都具有非常重要的作用。
以下考察Bickel等人所著《数理统计:基本思想与专题,上卷》①的主要内容。
Bickel等人将该书定位为“基于线性代数、矩阵论及高等微积分(不要求测度论)的、侧重于解决实际统计学问题的当代数理统计学教科书”。为此,它追求提供更可能多的细节,包括证明、演算、统计量之大样本表现,等等。本书16开,总共556页,其中正文部分440页,附录部分106页,索引10页。全书共分6章:第一章“统计模型、目标与性能准则”:本章先是介绍非参数及半参数模型,然后是参数模型,以强调模型识别的作用;作为样本空间函数的统计量也受到重视;对回归模型、贝叶斯方法、统计决策框架、具有k个参数的指数分布族等专题,也都给予了相当详细的阐述。第二章“关于估计的方法”:主要讨论估计问题、特别是极大似然估计(MLEs),给出了关于多参数指数族MLEs算法收敛性的常规证明,并对EM算法作了介绍(更指出了EM算法的局限)。第三章“性能度量、优化的概念与方法”及第四章“检验与置信域”,主要对检验理论和置信区间展开讨论,关于估计的优化理论、估计量稳健性也有所讲述;这两章的基调,总的说来是不刻意强调关于检验与估计的无偏性②,但对统计决策观点下的风险不等式、“非标准”统计决策观点下估计量的可计算性、可解释性、稳健性等,却给予了较详细的阐述(所谓“非标准”,指尽管损失函数及相应的决策模型业已确定,但估计量的其它一些特征如稳健性等,在决定采用何种决策方法时比风险函数更需予以考虑)。第五章“渐近近似”:提供关于一致性、渐近正态性、统计推断极大似然方法最优性的证明;本章还介绍了如何以Bernstein-von Mises定理做媒介,把贝叶斯推断与频率学派意义下的推断联系起来的途径。第六章“多参数情况的推断”:讨论多参数模型极大似然估计量的渐近正态性,广义线性模型下的推断问题,似然比检验渐近分布的Wilks定理,Wald和Rao统计量及其相应的置信区间;本章认为,多元微积分对于多参数统计分析具有一种“自然的内在联系”(“intrinsic”),读者必须熟悉,否则就不易进入当代统计学研究领域。
此外,本书还有两个附录,即附录A“概率论基础回顾”,附录B“概率与分析的其他主题”。
可以说,对任何有志于当代统计学研究的读者而言,这本书都能提供多方面有益的指导。
顺便指出,《高等数理统计学》在每一章开头的导言中,都简明扼要地交待这一章的主要内容、所涉及的统计思想、与上一章和/或下一章的联系,等等,使读者心中有底,思路清晰;而《数理统计:基本思想与专题,上卷》各章节开始部分不拘一格,但它为每一节都提供一段精炼的总结性文字(共30多段此种文字),使读者能够及时考察自己的阅读实效,扎扎实实地向前推进。
二、中美两本数理统计学教材开篇部分对比
这两本书的开篇部分(第一章)都非常精彩,把握好它们,将大大有助于对整本教材的理解。
《高等数理统计学》第一章包括四节内容,即1.1 样本空间与样本分布族,1.2统计决策理论的基本概念,1.3 统计量,1.4统计量的充分性,此外,还包括一个关于因子分解定理证明的附录。虽然为顾及后续章节的需要,本章对统计决策函数及风险函数、随机化决策函数、统计三大分布、幂等方阵等内容也在文中作了扼要叙述,但本章的中心,乃是阐述构成一个统计问题的各种要素即样本空间连同赋予其上的样本分布族,即统计模型(也可称概率模型),以及统计问题赖以解决的表达形式即统计量。这两个方面都非同小可,它们“是数理统计基础中的基础”(陈希孺先生语)。读者务必高度重视。
统计模型就是样本分布,而不管抽样的目的是什么。具体说来,一个问题的统计模型,指的就是研究该问题时所抽样本的分布。因此,模型是对确定的样本而言的,即只有在明确了样本产生方法、并辅以必要的假定,才能定下模型;而有了样本并规定了其分布之后,就可以提出各种所感兴趣的问题。不言而喻,统计模型具有高度的数学抽象性,其基础就是概率论;但模型的选定、有意义统计问题的提炼以及对结果做出恰当的解释和利用,都不能离开实际背景。这些就是我们对统计模型应有的理解①。
对于统计量,则应理解它是样本的函数,不能依赖任何未知参数,因为它本来就是用于对未知参数进行推断的。统计量是否具备充分性关系重大。所谓充分统计量,就是不损失关于参数θ信息的统计量。直接根据定义验证一个统计量是否充分,往往要经过复杂的计算,不太方便。所以,人们经常使用的是另一个更为便捷的判别准则,即因子分解定理
本文认为,在对统计模型和统计量有所把握之后,熟悉测度论中的一个著名定理即 “Radon-Nikodym定理②”,就显得十分必要了。事实上,陈希孺先生就是以引述这个定理为开端而展开第一章“预备知识”讨论的。该定理不仅有助于我们认识定义在样本空间上的概率分布族,而且有助于我们理解密度函数,从而为我们讨论随机变量的条件期望、条件概率及证明因子分解定理带来方便。前已指出,Bickel等人的书并不要求测度论,但他们在序言中对所论统计模型作了专门的假定,又在第一章末尾的注释部分追加了说明,我们将在下面的行文中论及此事。
可以看出,学好第一章,对于理解其余各章具有重大影响。本章虽然篇幅不长(32开仅52页),但由于它借助测度论,用严格的数学语言扼要而又全面地阐述数理统计学基础,故对于没有学过测度论或实变函数论的读者而言,难度较大。此外,如果读者关于统计推断的知识较薄弱,也会在阅读时遇到麻烦。我们认为,对基础较差的读者来说,选择一、两本中级数理统计学教材以及测度论教材作为过渡,是一个可行的措施。
以下考察《数理统计:基本思想与专题,上卷》第一章的内容。
该书这一章包含九节内容,即1.1数据、模型、参数与统计量,1.2 贝叶斯模型,1.3 决策论框架,1.4 预测,1.5 充分性,1.6 指数族,1.7 问题与补充,1.8 注释,1.9参考文献。需要指出,本章的最后三节是 “问题与补充”、“注释”以及“参考文献”(其余各章也都同此),它们是各章的有机组成部分,不可忽视。
借助于大量的例子,本章对非参数模型、半参数模型及参数模型,对统计量、回归模型、贝叶斯方法、统计决策框架、统计预测、具有k个参数的指数分布族等专题,都作了相当细致的阐述。不言而喻,本章的中心是讨论统计学参数模型。由于不要求测度论,作这种讨论就必须有所假设。作者未雨绸缪,在序言中早就声明:“As in the first edition, we do not require measure theory but assume from the start that our models are what we call‘regular.’That is, we assume either a discrete probability whose support does not depend on the parameter set, or the absolutely continuous case with a density.”(“像本书初版一样,我们在第二版也不要求测度论,但我们一开始就假定,本书所用的模型都是所谓的正则模型,即若为离散概率模型,其支撑集不依赖其参数集,若为绝对连续概率模型,它将具有密度”)。所谓分布的支撑集就是求概率时实质上起作用的集合。这一声明的重要性在于,加上这些简单的正则条件之后,离散情形以及连续情形下概率测度族的一致有界性,都能得到保证,从而为(虽未要求测度论时)证明因子分解定理①即统计量充要条件的判别准则提供了保证。
更进一步,作者在第一章末尾的注释中又写道:“For the measure theoretically minded we can assume more generally that the are all dominated by a finite measure and that denotes , the Radon-Nikodym derivative. (“从测度论的角度,我们可以更一般地假定,所有的 都受控于一 有限测度 ,并假定 指的就是Radon-Nikodym导数 ”)。序言中的声明满足了本书的定位要求(不要求测度论),而这里的注释,又从测度论严密性的角度帮助读者看清楚概率函数或频率函数 的实质,补充了正文的内容。
本章虽然没有要求测度论,但在运用矩阵、微积分及数理统计基础知识分析高深统计学问题时,它注重细节(“The devil is in the details.”),技巧娴熟,给人留下深刻印象,这应引起读者注意,而把所用案例(不限于第一章)理解透彻,对应用统计理论和方法解决实际问题很有借鉴价值。
三、两本教材关于统计推断与统计决策的看法择要
熟知,统计推断的目的在于“弄清情况”,而统计决策的目的在于“采取行动”,明确这一点有很大的理论和实际意义。因此,任何一本当代数理统计学教材,如果不讨论统计推断与统计决策之间的区别和联系,就难免会让人觉得不充分、不全面。
半个多世纪以前,统计决策理论的创始人Ward在其名著Statistical Decision Function中表明,引进统计决策理论的目的,是建立一种统一处理各种形式不同的统计推断问题的方法,强调统一性。但由于决策问题要考虑行动的损失而统计推断问题不需要考虑这种损失,于是就有学者强调它们的区别,而极端意见则认为推断与决策完全是两回事。
陈先生的看法是,“不大可能把二者截然划开”。细读《高等数理统计学》有关章节,可以说它既不忽视推断与决策的差别,也承认二者确有密切联系(实为一种折衷),这就为作者灵活而又不失一般性地处理推断与决策问题带来了便利(详见《高等数理统计学》第一章1.2节、第三章3.1、3.2、3.3节)。另外,因为统计决策和涉及全局比较的贝叶斯方法、极小化极大方法之间存在密切联系,所以,在每提出这样一种方法时(贝叶斯估计、极小化极大估计、广义贝叶斯估计、经验贝叶斯估计等),作者都注意从统计基础①的角度考察这些方法的含义、合理性及其优缺点,而不是仅仅罗列一大堆条件与结论的纯数学推演,这就使其叙述无枯燥之感而引人入胜。
在列举大量实例的基础上,Bickel等人认为:“Decision theory enables us to think clearly about an important hybrid of testing and estimation, confidence bounds and intervals(and more generally regions).”(“统计决策理论能使我们明确考虑一种重要的、具有混合性质的方法,它可以把检验与估计、置信界与区间、或更一般的置信界与区域,结为一体”)。从有关章节就可以清楚地看出,Bickel等人认为推断与决策相互联系紧密,统计检验问题完全可以从统计决策的观点予以对待(英文“hybrid”一词很值得玩味);而通过引进容许性②等概念,决策最优化也得到了讨论,等等(详见《数理统计:基本思想与专题,上卷》第一章1.3节及第四章4.1~4.9诸节)。
可见,不对统计推断与统计决策采取极端的看法,而是认识到它们的区别和联系,充分利用它们发展新的统计思想与方法,是这两本教材的另一个共同之处。
四、中美两本数理统计学教材习题安排一览
习题具有不可替代的作用,对此,两本教材均给予极大重视。陈希孺先生在《高等数理统计学》序言中指出:“作者一向主张,在打基础的阶段,应强调多做习题”;Bickel等人也在《数理统计:基本思想与专题,上卷》第二版序言中申明:“As in the first edition problems play a critical role by elucidating and often substantially expanding the text”(“与本书初版一样,本版的习题在减轻教材难点及拓展教材内容方面,也具有非常重要的作用”)。大致说来,陈希孺先生的《高等数理统计学》包含500道习题(若计小题,则超过1000道);而Bickel等人的《数理统计:基本思想与专题,上卷》第二版也包含大量习题(共计526道),其中有不少都是一题多问,如此一来其习题总数也达上千道之多。
《高等数理统计学》习题的难易程度分为三类,加“*”号的难度较大,加“º”号的相对容易,不加任何记号的,难度介于二者之间。如果一道题包含若干小题,各小题的难度可以不同。例如,第一章共有72道题,但加“*”号者只有三道题,它们是33、59、61这三道题,其余大部分为加“º”号的较为容易的题。因该章着重讲述统计模型以及统计量,读者不难想象加“*”号者应与它们有关,事实也确实如此。
陈希孺先生为读者着想,在书末为提供了全部习题的详细解题提示,并对大多数较难的题给出了完整解答。因为“鉴于这些题的难度,需要有一个解答文本在,以作为依据。” 但他提醒我们:“对读者而言,笔者切望这部分是备而不用、备而少用。如碰到一个题一时做不出来,宁肯暂时搁一搁,也不要轻易翻看解答。譬如登山,经过艰苦努力上了顶峰,自有其乐趣和成就感。反之,如在未尽全力之前就任人抬上去,则不惟无益,适足以挫折作者信心。” 陈希孺先生对读者的良苦用心可见一斑。
《数理统计:基本思想与专题,上卷》第二版的习题,从易到难也有梯度:占大多数的、单纯用于强化概念、以及部分补充课文内容的题目,比较容易,而少数综合性题目则有较大难度。
值得一提的是,兰州大学李泽慧教授等人,曾于1991年将《数理统计:基本思想与专题,上卷》第一版译成中文出版,还于1994年将该书第一版全部习题的解答(分上下两册)整理出版。陈希孺先生也曾给这本习题解答做序,在那里他又一次强调了习题的重要作用,并谆谆告诫读者不可一味依赖现成解答,主要还是靠自己动手练习。读者可以使用此习题解答作为学习该书第二版的参考(但应注意这两版的章节不一致,并且第二版题目也增加了,详见《数理统计:基本思想与专题,上卷》第二版序言)。
五、结语
从以上的对比中我们得出结论:这两本教材均出自大家手笔,定位虽然不同,但互补性很强;而且,它们都注重关于各种理论与方法的统计学思想的阐述,非常难能可贵。
我们还得出结论,没有良好的数学基础,或基础不牢固,也很难把这两本书读好。
还有一个语言问题,如果读者使用英语时“拦路虎”较多,关键之处理解不透,同样会增加使用Bickel等人所编教材的困难。
我们试提出以下7条建议供读者参考:
1. 下苦功学好线性代数、矩阵论(含广义逆)及高等微积分(含示性函数)。
2. 选择辅助读本,降低阅读难度。例如,上海科学技术出版社1988年出版的,陈希孺、倪国熙合编的《数理统计学教程》(现已有陈希孺所编同名著作面世);中国科学技术大学出版社2000年出版的,陈希孺编著的《概率论与数理统计》等,都是很好的读物,可以选择它们作为阅读《高等数理统计学》的辅助读本。
3. 测度论基础较薄弱的读者,可以阅读西安电子科技大学出版社2002年出版的,赵荣侠、崔群芳编著的《测度与积分》;北京师范大学出版社2004年出版的,严士健、刘秀芳编著的《测度与概率》或其它适宜的测度论著作,作为补课的参考。
4. 搜索相关文献、特别是有关专题的综述性文献,它们对攻读大部头学术专著非常有用(参看下条)。
5. 英语基础相当好但阅读能力较差的读者,应该树立信心,事实上阅读数理统计英语文献并不像人们想象的那样难。大学英语六级考试过关者已经具备一定的阅读能力,要充分利用,这种能力真的是“用进废退”!
6. 不耻下问,阅读中经过自学实在理解不了的问题,要勤于向行家请教。
7. 按照陈希孺先生的教导去做,不到万不得已,不去翻看习题解答;即使看过解答,也应该反思自己“卡壳”的原因,并应自行尝试其它解法。
“经典不厌百回读”。本文真诚希望所介绍的这两部数理统计教材成为读者的案头必备!
参考文献
1. 陈希孺. 数理统计引论 [M]. 北京. 科学出版社. 1981.
2. 陈希孺. 数理统计学简史 [M]. 湖南. 湖南教育出版社. 2002. 213-278.
3. 陈希孺. 陈希孺统计文选 [M]. 合肥. 中国科学技术大学出版社. 2003. 1-35.
4. 史宁中. 统计检验的理论与方法. [M]. 北京. 科学出版社. 2008. 1-187.
5. 梁之舜等. 概率论及数理统计(第三版,上下册) [M]. 北京. 高等教育出版社. 2005.
6. 范剑青. H. L. Koul. Frontiers in Statistics. [C]. London. Imperial College Press. 2006.
7. J. S. Maritz. Distribution-free Statistical Methods. [M]. Chapman and Hall. 1984.
8. 陈培德. 随机数学引论. [M]. 北京. 科学出版社. 2001. 92-146.
9. 陆璇. 数理统计基础. [M]. 北京. 清华大学出版社. 2006. 132-213.
10. [美] David Freedman等著. 魏宗舒等译. 统计学 [M]. 吴喜之校. 北京. 中国统计出版社. 1997. 1-735.
11. 张尧庭. 多元统计分析选讲. [M]. 北京. 中国统计出版社. 2002.
12. 黎子良. 统计推断与决策. [M]. 天津. 南开大学出版社. 1987.