关闭

素数--筛选法打表,快速幂,欧拉函数,gcd

519人阅读 评论(0) 收藏 举报
分类:

素数筛选法打表

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int M=1e6;
int check[M+50];
int prime[M+50];
int len=0;
void init()
{
    int i,j;
    for(i=2; i*i<=M; i++)
    {
        if(!check[i])
        {
            for(j=i*i; j<M; j+=i)
                check[j]=1;//1代表非素数,0代表素数
        }
    }
    check[1]=1;
    for(i=1; i<=M; i++)
    {
        if(!check[i])
        {
            prime[++len]=i;
        }
    }
}
int main()
{
    init();
    int n;
    cin>>n;//输出前n个素数
    for(int i=1; i<=n; i++)
        cout<<prime[i]<<endl;
}



快速幂取余
1

#include<iostream>
using namespace std;
int main()
{
    int i,j,k;
    int a,b,c,ans=1;
    cin>>a>>b>>c;
    a=a%c;
    while(b)
    {
        if(b%2==1)
            ans=a*ans%c;
        b/=2;
        a=a*a%c;
    }
    cout<<ans%c<<endl;
}

2

#include<iostream>
using namespace std;
int main()
{
    int i,j,k;
    int a,b,c,ans=1;
    cin>>a>>b>>c;
    a=a%c;
    while(b)
    {
        if(b&1)
            ans=a*ans%c;
        a=a*a%c;
        b>>=1;
    }
    cout<<ans%c<<endl;
}

欧拉函数

#include<iostream>
using namespace std;
int euler(int n)
{
    int ans=n,a=n;
    for(int i=2;i*i<=a;i++)
    {
        if(a%i==0)
        {
            ans=ans/i*(i-1);
            while(a%i==0)
                a/=i;
        }
    }
    if(a>1)
        ans=ans/a*(a-1);
    return ans;
}
int main()
{
    int T;
    cin>>T;
    while(T--)
    {
        int x;
        cin>>x;
        cout<<euler(x)<<endl;
    }
}

这两天在网上刚发现了一个欧拉筛选法,时间复杂度达到线性,很强!
没看懂,去大牛的博客里把模板copy过来用下~

//check数组里为0的代表素数,prime数组为素数表
#include<iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int MAXN=1e5;
const int MAXL=1e6;
int prime[MAXN+50];
bool check[MAXL+50];
int main()
{
    int n, len;
    memset(check, 0, sizeof(check));
    len = 0;
    for (int i = 2; i <= MAXL; i++)
    {
        if (!check[i])
            prime[len++] = i;
        for (int j = 0; j < len; j++)
        {
            if (i*prime[j] > MAXL)
                break; // 过大的时候跳出
            check[i*prime[j]] = 1;
            if ((i%prime[j]) == 0) // 如果i是一个合数,而且i % prime[j] == 0
                break;
        }
    }
    check[1]=1;
    while (~scanf("%d", &n))
    {
        for (int i = 1; i <=n; i++)
        {
            if(!check[i])
                cout<<i<<endl;
        }
    }
}

辗转相除法(gcd)

#include<iostream>
using namespace std;
long long int gcd(int m,int n)
{
    if(n==0)
        return m;
    return gcd(n,m%n);
}
int main()
{
    long long int m,n;
    while(cin>>m>>n)
    {
        cout<<gcd(m,n)<<endl;
    }
}

扩展欧几里得

LL exgcd(LL a,LL b,LL &x,LL &y)
{
    if(!b)
    {
        x=1;
        y=0;
        return a;
    }
    LL ans=exgcd(b,a%b,x,y);
    LL temp=x;
    x=y;
    y=temp-a/b*y;
    return ans;
}

乘法逆元

int extgcd(int a, int b, int& x, int& y)
{
    int d = a;
    if(b != 0){
        d = extgcd(b, a % b, y, x);
        y -= (a / b) * x;
    }else {
        x = 1;
        y = 0;
    }
    return d;
}
int mod_inverse(int a, int m)
{
    int x, y;
    extgcd(a, m, x, y);
    return (m + x % m) % m;
}
0
0
查看评论

O(N)的素数筛选法和欧拉函数

首先,在谈到素数筛选法时,先涉及几个小知识点. 1.一个数是否为质数的判定. 质数,只有1和其本身才是其约数,所以我们判定一个数是否为质数,只需要判定2~(N - 1)中是否存在其约数即可,此种方法的时间复杂度为O(N),随着N的增加,效率依然很慢。这里有个O()的方法:对于一个合数,其必用一个...
  • Dream_you_to_life
  • Dream_you_to_life
  • 2015-02-20 21:25
  • 3235

快速筛选法求素数表

文中的算法依据本博客中《高效判断素数方法》中的规律和结论。 素数出现规律: 当n≧5时,如果n为素数,那么n mod 6 = 1 或 n mod 6 = 5,即n一定出现在6x(x≥1)两侧。 证明: 当x≥1时,有如下表示方法: ┈┈ 6x,6x+1,6x+2,6x+3...
  • code_pang
  • code_pang
  • 2012-09-26 21:34
  • 6799

HDOJ 2824 The Euler function(欧拉函数+打表法)

The Euler function Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 4516...
  • zwj1452267376
  • zwj1452267376
  • 2015-08-24 19:42
  • 770

C++素数筛选法

const int arrSize=100001; int prime[arrSize]; //保存素数 int primeSize; //限定范围内素数个数 bool mark[arrSize]; //用来做标记 void primeFilter(){ primeSize=0; ...
  • Akeron
  • Akeron
  • 2017-03-08 22:13
  • 943

HDU2824欧拉函数筛选法打表

题意: 求a到b的所有欧拉函数值。 题解: 欧拉函数值筛选法打表就可以了,普通的打表会超时的。#include<stdio.h> #include<string.h> #include<algorithm> using namespace s...
  • Start_to_crazy
  • Start_to_crazy
  • 2018-01-14 20:33
  • 41

三种素数筛选法详解 (转)

转自:http://tr0217.blog.163.com/blog/static/3606648020099302135503/ 第一种:剔除2 3 4 5 6 ... ... 的倍数 在i从2开始的增一变化过程中,剔除i的倍数即j*i(j是大于等于2的自然数,j的
  • tongyongzh
  • tongyongzh
  • 2011-08-17 00:19
  • 13713

素数筛选法 (求1~n的素数)

具体方法就不阐述了,百度一下就能找到,
  • yzj577
  • yzj577
  • 2014-07-26 18:03
  • 4637

[模板]筛选法求欧拉函数

欧拉函数      对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。例如euler(8)=4,因为1,3,5,7均和8互质。      Euler函数表达通式:euler(x)=x(1-1/p1)(1-1...
  • u012848631
  • u012848631
  • 2015-06-07 18:30
  • 498

BZOJ 2818 Gcd(gcd(x,y)为素数/欧拉函数/莫比乌斯反演)

题目链接: BZOJ 2818 Gcd 题意: x∈[1,N],y∈[1,N],gcd(x,y)=素数的有序对(x,y)的对数。x\in [1,N],y\in [1, N],gcd(x,y)=素数的有序对(x,y)的对数。 分析: 对于一个素数p,如果gcd(x,y)=p,那么相当于x∈[...
  • Ramay7
  • Ramay7
  • 2016-06-04 14:55
  • 734

HDOJ 2588 GCD(欧拉函数)

GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1320  ...
  • zwj1452267376
  • zwj1452267376
  • 2015-08-24 21:28
  • 406
    个人资料
    • 访问:12856次
    • 积分:1241
    • 等级:
    • 排名:千里之外
    • 原创:115篇
    • 转载:0篇
    • 译文:0篇
    • 评论:4条
    最新评论