说明:本处的素数判断函数,只适用于int型。在无符号int和int64上的正确性还没有进行严格的验证。
从方便性来说,用普通的素数模板即可解决一般问题。打表法只有在需要判断大量很大的整数是否为素数时,才能体现出效率优势。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
方法一:普通法基本模板
#include <cmath>
bool isprime(int x)
{
int logo = 0, i, m;
if (x==2 || x==3) logo = 1;
else if ((x>4) && (x%2))
{
m = sqrt(x);
for (i = 3; (i<=m) && (x%i); i += 2);
if (i > m) logo = 1;
}
return logo;
}
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
方法一效率测试
#include <cmat

本文介绍了如何使用打表法来判断素数,特别适用于需要判断大量大整数的情况。文中提供了基本模板和效率测试,解释了利用预先计算好的素数表进行查找和遍历的方法,以提高素数判断的效率。
最低0.47元/天 解锁文章
1203

被折叠的 条评论
为什么被折叠?



