数学建模(5)---煤矸石堆积问题

原创 2004年09月12日 21:22:00

煤矸石堆积问题<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />

    

我们对煤矸石的堆积储存问题进行了研究。根据煤矸石的堆积要求,建设一段与地面角度约为β=25°的直线型上升轨道(角度过大,运矸车无法装满),用在轨道上行使的运矸车将矸石运到轨道的顶端后向两侧倾倒,待矸石堆高后,再借助矸石堆延长轨道,这样逐渐堆起如下图1所示的一座矸石山来。

首先,对堆积煤矸石最终所形成的规则的几何体分析,所形成的几何题是数学中较常见的几何体,因此可以根据几何关系找出这几个体中的相关因数。在整个运输煤矸石的工程中,随着对放煤矸石山的坡面长度的增加,整个运输煤矸石的费用也会相应的增加。整个费用包括土地征用费用和运输煤矸石的费用。土地征地费用与堆积的煤矸石所占地面积有关,而占地面积又与煤矸山坡面长度的增加而增加;同时,运输煤矸石所用的电费也是随着坡面长度的增加而增加的。将费用问题转化成为研究煤矸石山坡面长度,而整个坡面长度是时间的函数,于是总费用又与煤矸石的开采时间建立了联系,最终我们通过给定使用时间,得出坡面长度,确定处理矸石的总经费,在处理征地费时,由于地价的年涨幅大于了银行的贷款利息,所以我们用开始由银行贷款购足使用年限内所需的所有土地者正方式,结果表明这种操作后,设计中的年处理经费除部分用来缴纳电费外,其余全部偿还银行的贷款,按处理经费为100万元/年,适用年限为20年出矸率为10%计算,该设计经费是过用的且有结余。而且可以在第14年时还清银行贷款,在20年后,可以盈利4203637.83元。

 

关键词

使用年限   坡面长度   机械能 几何体体积 处理总费用 地价涨幅   贷款利率

 

一、        问题的提出

煤矿采矿时,会产出废料美感使在平原地区,煤矿只得征用土地堆放煤矸石。堆放煤矸石时,需架设一端与地面角度为一定值β的轨道(角度过大煤车无法装满),矸石的自然安息角а也为定值,运送煤矸石的矸石车机械效率也随轨道的增加而下降,土地的征用费存在年涨幅,在众多因素的影响下,我们需解决如下问题:

1.      判断设计处理经费是否够用;

2.      根据有关数据制定合理征地计划;

3.      对不同出矸率预测处理矸石的最低费用;

二、        问题分析

根据题意,煤矸石堆的几何形状是一定的(如图1),我们要解决的就是建立煤矸石堆积总费用与几何形状的体积的关系,由于地价存在年涨幅,征用土地需向银行贷款,又由于地价涨幅和银行贷款利率有所不同,还需考虑贷款方案,根据煤矿使用数年后的矸石体积,计算出坡面长度x确定占地面得出处理总费用,列出在不同出矸率时的最小费用。

<?xml:namespace prefix = v ns = "urn:schemas-microsoft-com:vml" />数学建模(5)---煤矸石堆积问题
1

 

三、        模型假设

1.      电费在当年付清、不拖欠;

2.      银行存、贷款利率和地价涨幅都固定不同;

3.      运矸所消耗的电能出机械损失外,全部转化成煤矸石的重力势能(运矸车匀速运动,且矸石车与坡面轨道见摩擦不计);

4.      征地为每年年初至征地一次;

5.      每年的处理经费按年拨对,且除交付当年电费外,其余全部用来征地或偿还贷款,严格做到专款专用,

四、        名词及符号约定

1.      x   ——煤矸石山坡面长度;

2.      ρ  ——容重;

3.      а  ——矸石自然堆放安息角;

4.      k1    ——用矸车所需的电费;

5.      η0  ——运矸车机械效率初始值;

6.      a   ——轨道每延长<?xml:namespace prefix = st1 ns = "urn:schemas-microsoft-com:office:smarttags" />10米,机械效率在原有的基础上下降的百分数;

7.      k2    ——土地征用费的现值;

8.      b   ——地价年涨幅;

9.      c1    ——银行的存款利率;

10.  c2    ——银行的贷款利率;

11.   M  ——煤矿设计的原煤年产量;

12.  N   ——煤矿的设计寿命;

13.  d   ——煤矿的出矿率;

14.  S(x)   ——坡面长度为x时,矸石堆实际占地面积;

15.  V(x)   ——坡面长度为x时,矸石堆的实际体积;

16.  η(x)  ——坡面长度为x时,运矸车的机械效率;

17.  w(x)   ——坡面长度为x时,运矸车所要消耗的电能;

18.  G(n)   ——煤矿开采n年时,矸石的总体积;

19.  H(n)   ——煤矿开采n年时,所用的总的电费;

20.  S(x(N))    ——在使用年限范围内,所用的土地总面积;

五、        模型的建立

1)      对几何体的分析

由图1知,A-SBOD为一个棱锥部分,A-DCOB为圆锥部分,SB与圆锥地面相切,图1中各个关系如下:

AO=sin(β)·x            CO=sin(β)·cot(а) ·x     SO=cos(β)·x

BOS=arc cos(tan(β)·cot(а))

2)      矸石山的底面积S(x)     

S(x)=S四边形SDOB+S扇形BODC

S四边形SDOB=x2·cos(β)·sin(β)·cot(а)·sin[arc cos(tan(β)·cot(а))]

S扇形BODC= x2·[pi-arc cos(tan(β)·cot(а))]·sin2(β)·cot2(а)

 S(x)= x2·{cos(β)·sin(β)·cot(а)·sin[arc cos(tan(β)·cot(а))]+[pi-arc cos(tan(β)·cot(а))]·sin2(β)·cot2(а)}=K(а, β) ·x2

       (其中:K(а, β)= cos(β)·sin(β)·cot(а)·sin[arc cos(tan(β)·cot(а))]+[pi-arc cos(tan(β)·cot(а))]·sin2(β)·cot2(а)

3)      矸石山体积V(x)

V(x)=1/3·S(x) ·AO=1/3·K(а, β)·sin(β)·x3

4)      机械效率

由题意知,在轨道每延长10米,效率在原有基础上下降2%,所以η(x)=30%·(1-2%)x/10

5)      机械能在坡面长度为x时,对微元增量dx存在体积微增量dv(x)

dw(x)=dv(x) ·ρ·g·x·sin(β)/ η(x)= K(а, β) ·sin2(β) · ρ·g·x3·dx/(30%·(1-2%)x/10)

w(x)=0x (K(а, β) ·sin2(β) · ρ·g·x3 /(30%·(1-2%)x/10))dx

6)      开采n年时出矸石的总体积;

G(n)=n·M·d/ρ=V(x(n))

X(n)=(3·n·M·d/ρ·K(а, β) ·sin(β))1/3

7)      n年所用总电费

H(n)=w(x(n)) ·0.5/(3.6·106)

n年需交电费为H(n)-H(n-1)

8)      使用年限N内,所用土地总面积S(x(N))= K(а, β) ·x2(N)

 

附录一:

1

function [rst]=t1(nYear)

if nargin~=1

    error('Error input arguments!');

else

    b=25/180*pi;a=55/180*pi;

    p=2000;g=9.8;

   

    sinb=sin(b);

    cosb=cos(b);

    cota=cot(a);

    arccos=acos(tan(b)*cot(a));

   

    kab1=cosb*sinb*cota*sin(arccos);

    kab2=(pi-arccos)*sinb^2*cota^2;

    kab=kab1+kab2;

   

    xf=(4500000*nYear*0.1/(kab*sinb))^(1/3);

   

    kw=kab*sinb^2*p*g/0.3;

    sym x;

    wIntegral=int('x^3/(0.98^(x/10))','x',0,xf);

    W=kw*wIntegral;

    monW=0.5/(3.6*10^6);

   

    Area=kab*xf^2;

    monA=1.1*80000/666.6667;

   

    AllMoney=W*monW+Area*monA;

   

%   disp('The total area is (Unit:MU);');disp(Area/666.6667);

%   disp('Area money (Unit:RMB):');disp(Area*monA);

%   disp('Eletricty money (Unit:RMB) ');disp(W*monW);

%   disp('Need money (Unit:RMB):');disp(AllMoney);

    rst=W*monW;

%     rst=AllMoney;

 

end;

2

function t2()

for iCount=1:19

    rstW(iCount,1)=t1(iCount+1)-t1(iCount);

end;  

abc=7595900*1.05-(1000000-73391);

for nCount=1:19

    disp('The year is; ');disp(nCount+1);

   

%         disp('All money have returned.');break;

%     else

        abc=abc*1.05-(1000000-rstW(nCount,1))

%     end;

end;

 
版权声明:本文为博主原创文章,未经博主允许不得转载。

数学建模 ————统计问题之预测(一)

该资料是笔者根据自身理解一点点写出来的,希望各位能尊重这一份来之不易的劳动成果。因个人水平有限,资料中难免会出现不足与错误,欢迎各位的批评指正。(笔者曾获得2015年全国大学生数学建模国家一等奖,20...
  • nightmare_dimple
  • nightmare_dimple
  • 2017年07月03日 19:31
  • 832

数学建模————统计问题之分类/聚类(二)

首先要弄明白分类和聚类的区别:      分类(判别):数据包含数据特征部分和样本标签部分,分类的目的就是判别新的数据特征到其应有的样本标签(类别)中。       比方说,现在告诉大家一个教室里面...
  • nightmare_dimple
  • nightmare_dimple
  • 2017年07月03日 20:33
  • 668

数学建模四大模型总结

文章作者吴翔 1        优化模型 1.1   数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2   微分方程组模型 阻滞增长模型、SARS传播模型。 ...
  • qq_27848507
  • qq_27848507
  • 2016年08月09日 11:02
  • 6038

《数学建模》之最优化(规划)数学模型

最简单的规划问题其实就是函数的求极值的问题。在这个基础上扩展并运用相关的软件解决实际生产中的一些问题。简单的说,就是一些最大、最小的问题。在这类问题中,重点在于写出目标函数、设置好决策变量、找对找全约...
  • fz_851474
  • fz_851474
  • 2016年08月12日 20:42
  • 839

数学建模————统计问题之仿真(四)

仿真,顾名思义,就是利用计算机模拟研究对象,对于那些用数学公式或者规则描述的系统,计算机可以将其通过数值模拟出来,还能实现可视化。就好比我们看的小说一样,创造一个世界,需要有初始的人或物质,再加上法则...
  • nightmare_dimple
  • nightmare_dimple
  • 2017年07月04日 13:15
  • 352

数学建模四类基本模型

四类基本模型 1         优化模型 1.1      数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2      微分方程组模型 ...
  • sinat_29741049
  • sinat_29741049
  • 2015年08月13日 13:38
  • 4595

数学建模十大经典算法漫谈

数学建模十大算法漫谈 作者:July  二零一一年一月二十九日本文参考:I、  细数二十世纪最伟大的十大算法 [译者:本人July]II、 本BLOG内 经典算法研究系列III、维基百科-------...
  • Augusdi
  • Augusdi
  • 2013年10月08日 21:44
  • 11849

Lingo学习心得&2014年研究生数模竞赛E题

第四次数模培训,题目:2014年研究生数学建模竞赛E题。乘用车物流运输计划问题前三问: 1. 物流公司要运输Ⅰ车型的乘用车100辆及Ⅱ车型的乘用车68辆。 2. 物流公司要运输Ⅱ车型的乘用车7...
  • kabuto_hui
  • kabuto_hui
  • 2015年08月25日 19:14
  • 917

利用MATLAB进行数学建模

一、用给定的多项式,如y=x3-6x2+5x-3,产生一组数据(xi,yi,i=1,2,…,n),再在yi上添加随机干扰(可用rand产生(0,1)均匀分布随机数,或用rands产生N(0,1)分布随...
  • qq_32666555
  • qq_32666555
  • 2017年03月23日 00:25
  • 1868

2017美国大学生数学建模感想及经验

本文主要阐述博主参与2017美国大学生数学建模的经验及感想。
  • m0_37374307
  • m0_37374307
  • 2017年01月25日 11:52
  • 1803
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:数学建模(5)---煤矸石堆积问题
举报原因:
原因补充:

(最多只允许输入30个字)