Sqrt(x) -- leetcode

原创 2016年08月30日 19:39:33

题目描述:
Implement int sqrt(int x).

Compute and return the square root of x.

如果输入的是正整数,并且,输出int类型的话,可以用二分查找的方法。
对于一个非负数n,它的平方根不会大于(n/2+1)。因为:
(n/2+1)2=n+1+n2/4>n。因此只需要在[0, n/2+1]的区间内二分查找。
代码:

class Solution {
public:
    int mySqrt(int x) {
        long long low = 0;
        long long high = x / 2 +1;
        long long mid = 0, p = 0;
        while(low <= high){
            mid = (low + high)/2;
            p = mid * mid;
            if (p == x) return mid;
            if (p < x) low = mid+1;
            if (p > x) high = mid-1;
        }
        return high;
    }
};

牛顿法:解决 double 类型的 x。

可以将求sqrt(x)转为函数:f(x)=x2n的求解。
牛顿迭代
首先取x0,若x0不是此次的解,以点(x0,f(x0))f(x)的切线,与x轴交于(x1,0)然后以此类推。以这样的方式得到的xi会无限趋近于f(x)=0的解。通过判断前后两个解xixi1是否无限接近,来判断xi是否为f(x)=0的解。
求过点(xi,f(xi))的切线方程,切线的斜率为f(xi),根据直线方程的两点式,f(x)f(xi)=f(xi)(xxi),然后令切线的f(x)=0xi+1=xif(xi)/f(xi)=xi(x2in)(2xi)=(xi+n/xi)/2
根据迭代公式:

#include <iostream>
using namespace std;
double sqrt(double);
int main() {
    double n;
    while (cin >> n) {
        double ans = sqrt(n);
        cout << ans << endl;
    }

    system("pause");
    return 0;
}
//判断两个doule类型的值是否相等
bool isEqual(double a, double b) {
    if (abs(a - b) > 0.000001)
        return false;
    return true;
}
//牛顿迭代法求解
double sqrt(double n) {
    double last = 0.0;//保存上一次的值
    double res = 1.0;//最近一次的值,初始化
    while (!isEqual(last, res)) {//不相等,继续搜索
        last = res;//保存上一次的值
        res = (res + n / res) / 2;//x_(i+1)=(x_i + n / x_i)/2
    }
    return res;
}

结果

版权声明:本文为博主原创文章,欢迎转载,请注明出处。

LeetCode Sqrt(x) 解题报告

http://oj.leetcode.com/problems/sqrtx/ 求一个整数的平方根,如果该整数的平方根不是整数的话,返回平方根取整。 最简单办法,暴力搜索从1到N/2搜索但会TLE。 二...
  • worldwindjp
  • worldwindjp
  • 2014年01月31日 09:44
  • 3849

Leetcode: Sqrt(x)

Implement int sqrt(int x). Compute and return the square root of x. 二分法: 这道题一看到函数的定义int sqrt(int x)...
  • doc_sgl
  • doc_sgl
  • 2013年10月07日 21:56
  • 15393

LeetCode69 Sqrt(x)**

链接地址:https://leetcode.com/problems/sqrtx/ 这道题就是求一个数的平方根 我这里提供三种方法 1:大家都知道平方根一定都是[1,x/2]之间,所以从1循环到x/2...
  • Lu597203933
  • Lu597203933
  • 2015年04月03日 10:17
  • 2871

Leetcode 69. Sqrt(x) 开根号 解题报告

1 解题思想这道题就是要求实现一个开根号的函数方法,我想在这里说的有: 1、二分法逼近,也就是我给出的做法,因为开根号给出的结果一定是在1到它本身之间的一个范围,所以我们初始让min=1,max=本...
  • MebiuW
  • MebiuW
  • 2016年05月11日 23:24
  • 874

leetcode 日经贴,python code -Sqrt(x)

Sqrt(x) class Solution: # @param x, an integer # @return an integer def sqrt(self, x)...
  • bachelorchen
  • bachelorchen
  • 2015年02月13日 12:44
  • 458

LeetCode 69 — Sqrt(x)(C++ Java Python)

题目:http://oj.leetcode.com/problems/sqrtx/ Implement int sqrt(int x). Compute and return the square ...
  • dragon_dream
  • dragon_dream
  • 2014年02月26日 21:39
  • 2989

Sqrt(x) -- LeetCode

原题链接: http://oj.leetcode.com/problems/sqrtx/  这是一道数值处理的题目,和Divide Two Integers不同,这道题一般采用数值中经常用的另一种方...
  • linhuanmars
  • linhuanmars
  • 2014年02月28日 01:06
  • 18107

LeetCode-69-Sqrt(x) Python要用math.sqrt()

class Solution(object): def mySqrt(self, x): """ :type x: int :rtype: in...
  • qdbszsj
  • qdbszsj
  • 2017年09月20日 22:43
  • 159

Leetcode 69. Sqrt(x) 解题报告【C库函数sqrt(x)模拟-求平方根】

69. Sqrt(x) Total Accepted: 93296 Total Submissions: 368340 Difficulty: Medium 提交网址: https://leetc...
  • yanglr2010
  • yanglr2010
  • 2016年05月07日 07:57
  • 1480

leetcode:Sqrt(x) 牛顿迭代法求整数开方

牛顿迭代法求Sqrt(x)    为了方便理解,就先以本题为例:    计算x2 = n的解,令f(x)=x2-n,相当于求解f(x)=0的解,如左图所示。    首先取x0,如果x...
  • newfelen
  • newfelen
  • 2014年04月10日 15:46
  • 854
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Sqrt(x) -- leetcode
举报原因:
原因补充:

(最多只允许输入30个字)