POJ 1236 Network of Schools (强连通分量、缩点)

翻译 2016年08月29日 02:59:56

连通图一块概念和定理比较多,要记得东西很多。

注意到 强连通分量是有向图的概念,双连通分支一般是无向图的概念。

两者都和tarjan算法密不可分,但其实算法并不难,就是要开的数组和变量比较多,代码也有一定的灵活性,写的时候要注意细节。并且做题的时候往往都是要用到一些“定理、结论”。熟能生巧,唯有多做。

思路来自于 PKU的《强连通分量》教学材料

题意:

给定一个有向图,求:

1) 至少要选几个顶点,才能做到从这些顶点出 发,可以到达全部顶点

2) 至少要加多少条边,才能使得从任何一个顶 点出发,都能到达全部顶点

思路:

定理:有向无环图中所有入度不为0的点,一定 可以由某个入度为0的点出发可达。 (由于无环,所以从任何入度不为0的 点往回走,必然终止于一个入度为0的 点)

1. 求出所有强连通分量
2. 每个强连通分量缩成一点,则形成一个有 向无环图DAG。
3. DAG上面有多少个入度为0的顶点,问题1的 答案就是多少

4.在DAG上要加几条边,才能使得DAG变成强连通 的,问题2的答案就是多少

加边的方法:
 要为每个入度为0的点添加入边,为每个出度 为0的点添加出边
 假定有 n 个入度为0的点,m个出度为0的点, max(m,n)就是第二个问题的解,其实就是m或n谁更小就在另外n或m个点引一条边指向它们。


【代码】 (有个trick点,原图本身连通的时候prinf(0,1) )

/* ***********************************************
Author        :angon

************************************************ */
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <stack>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define showtime fprintf(stderr,"time = %.15f\n",clock() / (double)CLOCKS_PER_SEC)
#define lld %I64d
#define REP(i,k,n) for(int i=k;i<n;i++)
#define REPP(i,k,n) for(int i=k;i<=n;i++)
#define scan(d) scanf("%d",&d)
#define scanl(d) scanf("%I64d",&d)
#define scann(n,m) scanf("%d%d",&n,&m)
#define scannl(n,m) scanf("%I64d%I64d",&n,&m)
#define mst(a,k)  memset(a,k,sizeof(a))
#define LL long long
#define N 105
#define mod 1000000007
inline int read(){int s=0;char ch=getchar();for(; ch<'0'||ch>'9'; ch=getchar());for(; ch>='0'&&ch<='9'; ch=getchar())s=s*10+ch-'0';return s;}


struct Edge
{
    int v,next;
}edge[N*N];
int head[N],tot;
int belong[N],Stack[N],inStack[N];
int low[N],dfn[N];
int scc,TimeN,top;
int out[N],in[N];
void addedge(int u,int v)
{
    edge[tot].v=v; edge[tot].next=head[u]; head[u] = tot++;
}

void tarjan(int u)
{
    dfn[u] = low[u] = ++TimeN;
    Stack[top++] = u;
    inStack[u] = 1;
    for(int i=head[u]; ~i; i=edge[i].next)
    {
        int v=edge[i].v;
        if(!dfn[v])
        {
            tarjan(v);
            low[u] = min(low[u],low[v]);
        }
        else if(inStack[v])
            low[u] = min(low[u],dfn[v]);
    }
    if(dfn[u]==low[u])
    {
        int v;
        scc++;
        do
        {
            v = Stack[--top];
            inStack[v] = 0;
            belong[v] = scc;
        }while(v!=u);
    }
}

void init()
{
    mst(head,-1); tot=0;
    mst(inStack,0); mst(dfn,0);
    scc = top = TimeN = 0;
    mst(out,0); mst(in,0);
}

int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int n;
    while(~scan(n))
    {
        init();
        REPP(u,1,n)
        {
            int v;
            while(scan(v) && v)
                addedge(u,v);
        }
        REPP(u,1,n)
            if(!dfn[u])
                tarjan(u);
        if(scc==1)
        {
            printf("1\n0\n");
            continue;
        }
        REPP(u,1,n)
        {
            for(int i=head[u]; ~i; i=edge[i].next)
            {
                int v=edge[i].v;
                if(belong[u]==belong[v]) continue;
                out[belong[u]]++;
                in[belong[v]]++;
            }
        }
        int c=0,r=0;
        REPP(i,1,scc)
        {
            if(in[i]==0) r++;
            if(out[i]==0) c++;
        }
        printf("%d\n%d\n",r,max(r,c));

    }
    return 0;
}

poj1236 Network of Schools--Kosaraju算法 & 缩点 & 强连通分量

原题链接:http://poj.org/problem?id=1236 题意:n个学校,给定n行,第i行代表i学校到其他学校是可传输的,单向。问题1:初始至少需要向多少个学校发放软件,使得网...
  • LaoJiu_
  • LaoJiu_
  • 2016年09月10日 10:01
  • 511

poj 1236 Network of Schools(强连通分量缩点)

题目链接: 点击打开链接 题目大意: 给出一个网络,问最少向几个点发布信息,才能传播到整张图,第二问问最少添加多少条边,能将这个这个图变成一个强连通图 题目分析: 首先第一问,一定要先强...

poj 1236 Network of Schools(强连通分量+缩点)

http://poj.org/problem?id=1236 题意: 有向关系体现在电脑之间可以通过网络单向的传输文件,并规定一旦有电脑存在该文件,那么所有它能传输的电脑都能在第一时间得到这个文件。给...

poj1236——Network of Schools(强连通分量+缩点)

Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 15674 Ac...

【连通图|强连通分量+缩点】POJ-1236 Network of Schools

给出一个有向连通图,求(1)至少从几个点出发可以遍历整张图;(2)至少添加几条边可以使该图变成强连通图。...

poj1236 Network of Schools ,有向图求强连通分量(Tarjan算法),缩点

题目链接: 点击打开链接 题意:  给定一个有向图,求: 1) 至少要选几个顶点,才能做到从这些顶点出发,可以到达全部顶点 2) 至少要加多少条边,才能使得从任何一个顶点出发,都能到达全部顶点  ...
  • yew1eb
  • yew1eb
  • 2014年08月04日 14:31
  • 1824

poj1236Network of Schools_强连通分量缩点(tarjan算法解决)

poj1236题目链接 题目大意:有N个学校,从每个学校都能从一个单向网络到另外一个学校,两个问题 1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都能得到软件。 2:至少需要添加...

POJ 1236 Network of Schools (强连通分量,块,缩点)

题意:一些学校通过网络连接在一起,每个学校手中有一份名单,即它所指向的点。学校A的名单中有学校B,并不能保证学校B的名单里有学校A。现在有一软件,1.问至少发给几个学校才能保证所有的学校都可以得到该软...
  • Tsaid
  • Tsaid
  • 2011年10月18日 15:29
  • 416

Network of Schools POJ - 1236 tarjan强连通分量缩点

A number of schools are connected to a computer network. Agreements have been developed among those ...

POJ 1236 Network of Schools HDU 3836 Equivalent Sets 强连通分量+缩点 tarjan or kosaraju

1,POJ 1236 有一些学校连接到一个计算机网络,这些学校之间达成了一个协议:每个学校维护着一个学校列表,它向学校列表中的学校发布软件。注意,如果学校B在学校A的列表中,则A不一定在B的列表中。...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ 1236 Network of Schools (强连通分量、缩点)
举报原因:
原因补充:

(最多只允许输入30个字)