关闭

【杭电-oj】-2050-折线分割平面

205人阅读 评论(0) 收藏 举报
分类:

折线分割平面

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 24974    Accepted Submission(s): 16969


Problem Description
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。
 

Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。

 

Output
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。

 

Sample Input
2 1 2
 

Sample Output
2 7
 

规律:a[n]=(2*(n-1)-1)*2+3+a[n-1];
第n条折线的两条边都与前n-1条折线的所有边相交,
第n条折线的第一条边要与前n-1条折线的2*(n-1)条边都相交,每与两个边相交就增加一个分割开的部分,所以有2*(n-1)-1个被分割的部分在这里被增加,另外一条第n条折线的边也增加2*(n-1)-1个部分,最后第n条折线的两边还要向外无限延伸,与它们相交的最后一个前n-1个折线中的边与其分别构成了一个多余的部分,而第n条折线的头部也是一个独立的部分,所以2*(n-1)-1再+3,就是比n-1条折线分割成的部分多出的部分数,再加上a[n-1]数目即可


#include<cstdio>
int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		int n;
		int a[10010];
		a[1]=2;
		scanf("%d",&n);
		for(int i=2;i<=10000;i++)
			a[i]=2*(2*(i-1)-1)+3+a[i-1];
		printf("%d\n",a[n]);
	}
	return 0;
 } 




0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:82940次
    • 积分:4316
    • 等级:
    • 排名:第7487名
    • 原创:362篇
    • 转载:1篇
    • 译文:0篇
    • 评论:14条