1. 如果事件组B1,B2,.... 满足
1.B1,B2....两两互斥,即 Bi ∩ Bj = ∅ ,i≠j , i,j=1,2,....,且P(Bi)>0,i=1,2,....;
2.B1∪B2∪....=Ω ,则称事件组 B1,B2,...是样本空间Ω的一个划分
设 B1,B2,...是样本空间Ω的一个划分,A为任一事件,则:
上式即为全概率公式(formula of total probability)
2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(Bi),P(A|Bi) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...Bn,这样事件A就被事件AB1,AB2,...ABn分解成了n部分,即A=AB1+AB2+...+ABn, 每一Bi发生都可能导致A发生相应的概率是P(A|Bi),由加法公式得
P(A)=P(AB1)+P(AB2)+....+P(ABn)
=P(A|B1)P(B1)+P(A|B2)P(B2)+...+P(A|Bn)P(PBn)
3.实例:某车间用甲、乙、丙三台机床进行生产,各台机床次品率分别为5%,4%,2%,它们各自的产品分别占总量的25%,35%,40%,将它们的产品混在一起,求任取一个产品是次品的概率。
解:设..... P(A)=25%*5%+4%*35%+2%*40%=0.0345
最后欢迎大家访问我的个人网站:1024s