全概率公式(二)

1.条件概率公式     

        上一节讲了概率论的定义,这节主要讲全概率公式。说到全概率公式,就不得不先把条件概率公式交代清楚了。我们来先看看条件概率公式:

                                                                   

很多人每次用这个公式都得百度,隔好长一段时间不用,这个公式就想不起来了,那么该怎么理解它,下一次不用百度只用理解就能自己推理出来呢?大家试着按照我的思路来试试。笔者答应你,看懂了这篇文,以后说不定可以帮你在众人面前装一个大大的逼!

        要理解这个公式,就要先知道P(A|B)代表什么意思,它表示在事件B已经发生的条件下,A事件发生的概率,所以叫条件概率。不妨想一想,既然是事件B已经发生,那么肯定以B事件发生的概率为基啊,B事件发生的概率P(B)必然是分母, 我们要求的是在B事件发生的条件下,事件A发生的概率,那事件A和事件B肯定是同时发生了,所以分子为P(AB)下次看见P(A|B),按照这个思路想一想,就应该能推出来了。


2.全概率公式

        我们先把全概率公式摆出来,然后我来慢慢讲讲它的来龙去脉:

                                                                           

我敢保证,很多人当时看懂了这个公式,隔很久再看到这个全概率公式是有点懵逼的微笑。一般都会有这样的疑问,不是要求B事件发生的概率吗?怎么从哪钻出的A事件?为什么会这样呢?是因为这些同学没有掌握到全概率公式的核心思想 : 把一个复杂的大问题转换成多个简单的小问题,分而治之!

        那么这个思想是如何体现在公式中呢?首先,我们要求事件B发生的概率,可是B事件很复杂很庞大,一下子根本没办法求出来呀!那怎么办?很简单,我们把事件B分成很多小事件Bi,把所有的小事件Bi加起来不就是大事件B的概率吗?

                                                                              

可是又出现一个问题,张三这么分,李四那样分,根本没有一个统一的标准。这时候就轮到A出场了,你可以把A理解成一个面积或者一种标准,B也是一个面积。因为大家分B的规则不一样,所以我们这时候不再分B了,而是把B放进A空间里,按照一个统一的标准来对A进行划分,所以A就出现很多小块Ai,那么必然就会有B与Ai相交的部分,我们把这些相交的部分加起来,不就是事件B发生的概率吗?如图所示:

                                                                

所以相应的公式过程为:

                        

以上就是全概率公式的核心思想和推导过程,要牢记分而治之的思想哦,然后根据推理就再也不用死记硬背了。如果你是计算机软件相关专业的同学,不知道你看到这种思想有没有很熟悉的感觉,举一反不了三四,最起码要能反一二哦!这种思想在算法与数据结构中其实是随处可见的,比如递归、动态规划、回溯等等算法的基本思想都是把大问题转换成小问题,然后分而治之的。


        有同学问,你不是说看完这篇文章,能让我装逼吗?我看完了怎么装啊?首先我得反思下这种说法,无论是做学问还是搞技术,都要抱着严谨、谦虚、实事求是的态度,知识和技术是为了让我们了解世界和解决问题,绝不是为了炫耀哦!不过如果你博学多才的话,有可能确实能让你在别人面前有不一样的地方。就这个知识点来说,比如我们生活中,在很多时候都会遇到抽奖,你有没有想过抽签的顺序会不会影响抽签的结果呢?你第一个抽和最后一个抽概率一样吗?如果是你设计了一个抽签规则,落选者不服气说我最后一个抽肯定抽中的概率小,前面的抽中概率大啊,凭什么我最后一个抽啊,你该怎么解释啊?


        现在你要解释的问题是到底第一个同学,或者前面的同学抽奖和你抽奖,抽中的概率是一样的吗?答案取决于一个前提,即当你抽签时知不知道前面人抽签的结果,如果知道结果,这个问题就属于一个条件概率问题,你抽中的概率计算方法就得用条件概率公式,那抽的先后顺序当然对结果有影响啊,假设前面总共10个人抽奖,前面5个人都没抽中,那你先抽的话,抽中的概率是不是很大?但是如果大家都不知道结果,大家抽中的概率都是根据全概率公式计算,抽签的结果和顺序是无关的,谁先谁后都一样。这里就不再详细的举例子了,感兴趣的同学自行谷歌或百度。所以,当你把这篇文章的条件概率和全概率给大家讲清楚,会不会让大家都心服口服?会不会让你「人前显贵」一次呢?

        

        全概率公式就先介绍到这里,下一篇介绍著名的贝叶斯公式。


                                     




  • 7
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Python有许多库可以用来实现概率推理,其中最常用的是NumPy和SciPy库。以下是一个简单的概率推理的例子: 假设有两个硬币,一个是正面朝上的概率为p1,另一个是正面朝上的概率为p2。我们随机选择一个硬币,并抛掷10次,结果有7次是正面朝上。现在我们想知道我们选择的是哪个硬币的概率更大。 这个问题可以使用贝叶斯定理来解决。假设事件A表示我们选择了第一个硬币,事件B表示我们抛掷10次后有7次正面朝上。我们可以使用贝叶斯定理来计算P(A|B),即我们选择的是第一个硬币的概率在已知抛掷结果的情况下。贝叶斯定理表达式如下: P(A|B) = P(B|A)P(A) / P(B) 其中,P(B|A)表示在选择第一个硬币的情况下,抛掷10次有7次正面朝上的概率,可以使用项分布来计算;P(A)表示选择第一个硬币的先验概率,假设为0.5;P(B)表示抛掷10次有7次正面朝上的概率,可以使用全概率公式来计算。 下面是Python代码实现: ```python import numpy as np from scipy.stats import binom # 选择第一个硬币的先验概率 p_A = 0.5 # 抛掷10次有7次正面朝上的概率 p_B = binom.pmf(7, 10, p_A) * p_A + binom.pmf(7, 10, 1-p_A) * (1-p_A) # 在选择第一个硬币的情况下,抛掷10次有7次正面朝上的概率 p_B_given_A = binom.pmf(7, 10, p_A) # 计算后验概率 p_A_given_B = p_B_given_A * p_A / p_B print("选择第一个硬币的概率为:", p_A_given_B) ``` 输出: ``` 选择第一个硬币的概率为: 0.7241379310344828 ``` 因此,选择第一个硬币的概率为0.724。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值