最大子段和问题

转载 2016年05月30日 20:21:52

动态规划思路:

将每一个数是否列入当前子段作为一个决策,

1.如果加上这个数后子段和仍然大于0,那么加上这个数

2.如果加上这个数后子段和小于0,那么子段清零,下一个数作为新的子段的开始

在这个过程中记录遇到的最大子段和

int MaxSum_DP(int *arr,int n)
{
int sum = 0;
int tmp = 0;
for(int i=0; i<n; ++i)
{
if(tmp > 0) {tmp += arr[i];}
else        {tmp  = arr[i];}
if(tmp >sum){sum  = tmp   ;}
}
return sum;
}

如果需要知道最大子段的位置,可以添加记录数据:

[cpp] view plain copy
  1. int MaxSum_DP(int *arr,int n,int &besti,int &bestj)  
  2. {  
  3.     int sum = 0;  
  4.     int tmp = 0;  
  5.     int tmp_start = 0;  
  6.     int tmp_len   = 0;  
  7.     for(int i=0;i<n; ++i)  
  8.     {  
  9.         if( tmp > 0 )  { tmp+= arr[i]; tmp_len++;}  
  10.         else           { tmp = arr[i]; tmp_start = i; tmp_len =  1;}  
  11.         if( tmp > sum ){ sum = tmp   ; besti=tmp_start; bestj=besti+tmp_len-1;}  
  12.     }  
  13.     return sum;  
  14. }  
[cpp] view plain copy
  1. 算法的复杂度为O(n)  

最大子矩阵和问题
        (1)问题描述:给定一个m行n列的整数矩阵A,试求A的一个子矩阵,时期各元素之和为最大。

     (2)问题分析:

      用二维数组a[1:m][1:n]表示给定的m行n列的整数矩阵。子数组a[i1:i2][j1:j2]表示左上角和右下角行列坐标分别为(i1,j1)和(i2,j2)的子矩阵,其各元素之和记为:

      最大子矩阵问题的最优值为。如果用直接枚举的方法解最大子矩阵和问题,需要O(m^2n^2)时间。注意到,式中,,设,则

容易看出,这正是一维情形的最大子段和问题。因此,借助最大子段和问题的动态规划算法MaxSum,可设计出最大子矩阵和动态规划算法如下:

[cpp] view plain copy
  1. //3d4-5 最大子矩阵之和问题  
  2. #include "stdafx.h"  
  3. #include <iostream>   
  4. using namespace std;   
  5.   
  6. const int M=4;  
  7. const int N=3;  
  8.   
  9. int MaxSum(int n,int *a);  
  10. int MaxSum2(int m,int n,int a[M][N]);  
  11.   
  12. int main()  
  13. {  
  14.     int a[][N] = {{4,-2,9},{-1,3,8},{-6,7,6},{0,9,-5}};  
  15.   
  16.     for(int i=0; i<M; i++)  
  17.     {  
  18.         for(int j=0; j<N; j++)  
  19.         {  
  20.             cout<<a[i][j]<<" ";  
  21.         }  
  22.         cout<<endl;  
  23.     }  
  24.   
  25.     cout<<endl;  
  26.     cout<<"数组a的最大连续子段和为:"<<MaxSum2(M,N,a)<<endl;  
  27.   
  28.     return 0;  
  29. }  
  30.   
  31. int MaxSum2(int m,int n,int a[M][N])  
  32. {  
  33.     int sum = 0;  
  34.     int *b = new int[n+1];  
  35.     for(int i=0; i<m; i++)//枚举行  
  36.     {  
  37.         for(int k=0; k<n;k++)  
  38.         {  
  39.             b[k]=0;  
  40.         }  
  41.   
  42.         for(int j=i;j<m;j++)//枚举初始行i,结束行j  
  43.         {  
  44.             for(int k=0; k<n; k++)  
  45.             {  
  46.                 b[k] += a[j][k];//b[k]为纵向列之和  
  47.                 int max = MaxSum(n,b);  
  48.                 if(max>sum)  
  49.                 {  
  50.                     sum = max;  
  51.                 }  
  52.             }  
  53.         }  
  54.     }  
  55.     return sum;  
  56. }  
  57.   
  58. int MaxSum(int n,int *a)  
  59. {  
  60.     int sum=0,b=0;  
  61.     for(int i=1; i<=n; i++)  
  62.     {  
  63.         if(b>0)  
  64.         {  
  65.             b+=a[i];  
  66.         }  
  67.         else  
  68.         {  
  69.             b=a[i];  
  70.         }  
  71.         if(b>sum)  
  72.         {  
  73.             sum = b;  
  74.         }  
  75.     }  
  76.     return sum;  
  77. }  
     以上代码MaxSum2方法的执行过程可用下图表示:


     3、最大m子段和问题

     (1)问题描述:给定由n个整数(可能为负数)组成的序列a1,a2,a3……an,以及一个正整数m,要求确定此序列的m个不相交子段的总和达到最大。最大子段和问题是最大m字段和问题当m=1时的特殊情形。

     (2)问题分析:设b(i,j)表示数组a的前j项中i个子段和的最大值,且第i个子段含a[j](1<=i<=m,i<=j<=n),则所求的最优值显然为。与最大子段问题相似,计算b(i,j)的递归式为:

     其中,表示第i个子段含a[j-1],而项表示第i个子段仅含a[j]。初始时,b(0,j)=0,(1<=j<=n);b(i,0)=0,(1<=i<=m)。

     具体代码如下:

[cpp] view plain copy
  1. //3d4-6 最大m子段问题  
  2. #include "stdafx.h"  
  3. #include <iostream>   
  4. using namespace std;   
  5.   
  6. int MaxSum(int m,int n,int *a);  
  7.   
  8. int main()  
  9. {  
  10.     int a[] = {0,2,3,-7,6,4,-5};//数组脚标从1开始  
  11.     for(int i=1; i<=6; i++)  
  12.     {  
  13.         cout<<a[i]<<" ";  
  14.     }  
  15.   
  16.     cout<<endl;  
  17.     cout<<"数组a的最大连续子段和为:"<<MaxSum(3,6,a)<<endl;  
  18.     }  
  19.   
  20. int MaxSum(int m,int n,int *a)  
  21. {  
  22.     if(n<m || m<1)  
  23.         return 0;  
  24.     int **b = new int *[m+1];  
  25.   
  26.     for(int i=0; i<=m; i++)  
  27.     {  
  28.         b[i] = new int[n+1];  
  29.     }  
  30.   
  31.     for(int i=0; i<=m; i++)  
  32.     {  
  33.         b[i][0] = 0;  
  34.     }  
  35.   
  36.     for(int j=1;j<=n; j++)  
  37.     {  
  38.         b[0][j] = 0;  
  39.     }  
  40.   
  41.     //枚举子段数目,从1开始,迭代到m,递推出b[i][j]的值  
  42.     for(int i=1; i<=m; i++)  
  43.     {  
  44.         //n-m+i限制避免多余运算,当i=m时,j最大为n,可据此递推所有情形  
  45.         for(int j=i; j<=n-m+i; j++)  
  46.         {  
  47.             if(j>i)  
  48.             {  
  49.                 b[i][j] = b[i][j-1] + a[j];//代表a[j]同a[j-1]一起,都在最后一子段中  
  50.                 for(int k=i-1; k<j; k++)  
  51.                 {  
  52.                     if(b[i][j]<b[i-1][k]+a[j])  
  53.                         b[i][j] = b[i-1][k]+a[j];//代表最后一子段仅包含a[j]  
  54.                 }  
  55.             }  
  56.             else  
  57.             {  
  58.                 b[i][j] = b[i-1][j-1]+a[j];//当i=j时,每一项为一子段  
  59.             }  
  60.         }  
  61.     }  
  62.     int sum = 0;  
  63.     for(int j=m; j<=n; j++)  
  64.     {  
  65.         if(sum<b[m][j])  
  66.         {  
  67.             sum = b[m][j];  
  68.         }  
  69.     }  
  70.     return sum;  
  71. }  

     上述算法的时间复杂度为O(mn^2),空间复杂度为O(mn)。其实,上述算法中,计算b[i][j]时,只用到了数组b的第i-1行和第i行的值。因而,算法中只要存储数组b的当前行,不必存储整个数组。另一方面,的值可以在计算i-1行时预先计算并保存起来。计算第i行的值时不必重新计算,节省了计算时间和空间。因此,算法可继续改进如下:

[cpp] view plain copy
  1. //3d4-7 最大m子段问题  
  2. #include "stdafx.h"  
  3. #include <iostream>   
  4. using namespace std;   
  5.   
  6. int MaxSum(int m,int n,int *a);  
  7.   
  8. int main()  
  9. {  
  10.     int a[] = {0,2,3,-7,6,4,-5};//数组脚标从1开始  
  11.     for(int i=1; i<=6; i++)  
  12.     {  
  13.         cout<<a[i]<<" ";  
  14.     }  
  15.   
  16.     cout<<endl;  
  17.     cout<<"数组a的最大连续子段和为:"<<MaxSum(3,6,a)<<endl;  
  18.     }  
  19.   
  20. int MaxSum(int m,int n,int *a)  
  21. {  
  22.     if(n<m || m<1)  
  23.         return 0;  
  24.     int *b = new int[n+1];  
  25.     int *c = new int[n+1];  
  26.   
  27.     b[0] = 0;//b数组记录第i行的最大i子段和  
  28.     c[1] = 0;//c数组记录第i-1行的最大i-1子段和  
  29.   
  30.     for(int i=1; i<=m; i++)  
  31.     {  
  32.         b[i] = b[i-1] + a[i];  
  33.         c[i-1] = b[i];  
  34.         int max = b[i];  
  35.   
  36.         //n-m+i限制避免多余运算,当i=m时,j最大为n,可据此递推所有情形  
  37.         for(int j=i+1; j<=i+n-m;j++)  
  38.         {  
  39.             b[j] = b[j-1]>c[j-1]?b[j-1]+a[j]:c[j-1]+a[j];  
  40.             c[j-1] = max;//预先保存第j-1行的最大j-1子段和  
  41.   
  42.             if(max<b[j])  
  43.             {  
  44.                 max = b[j];  
  45.             }  
  46.         }  
  47.         c[i+n-m] = max;  
  48.     }  
  49.   
  50.     int sum = 0;  
  51.     for(int j=m; j<=n; j++)  
  52.     {  
  53.         if(sum<b[j])  
  54.         {  
  55.             sum = b[j];  
  56.         }  
  57.     }  
  58.     return sum;  
  59. }  

     上述算法时间复杂度为O(m(n-m)),空间复杂度为O(n)。当m或n-m为常数时,时间复杂度和空间复杂度均为O(n)。


相关文章推荐

最大子段和问题

最大子段和问题

最大子段和 问题描述: 给定由n个整数(包含负整数)组成的序列a1,a2,...,an,求该序列子段和的最大值。 当所有整数均为负值时定义其最大子段和为0。 依此定义,所求的最...

算法最大子段和问题

最大子段和问题

最大子段和问题(Maximum Interval Sum) 经典的动态规划问题,几乎所有的算法教材都会提到.本文将分析最大子段和问题的几种不同效率的解法,以及最大子段和问题的扩展和运用. ...

最大子段和问题

给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整均为负数时定义子段和为0分治法: 分析:首先...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)