5-50 畅通工程之局部最小花费问题 (35分)

原创 2016年08月31日 11:47:43

5-50 畅通工程之局部最小花费问题 (35分)

某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交通(但不一定有直接的快速道路相连,只要互相间接通过快速路可达即可)。现得到城镇道路统计表,表中列出了任意两城镇间修建快速路的费用,以及该道路是否已经修通的状态。现请你编写程序,计算出全地区畅通需要的最低成本。
输入格式:

输入的第一行给出村庄数目NNN (1≤N≤100);随后的N(N−1)/2行对应村庄间道路的成本及修建状态:每行给出4个正整数,分别是两个村庄的编号(从1编号到N),此两村庄间道路的成本,以及修建状态 — 1表示已建,0表示未建。
输出格式:

输出全省畅通需要的最低成本。
输入样例:

4
1 2 1 1
1 3 4 0
1 4 1 1
2 3 3 0
2 4 2 1
3 4 5 0

输出样例:

3

思路
关键词:最小生成树(对于已经存在道路联通的两点,可设置其连接代价为0,不连通的连接代价“无限大”)

#include<stdlib.h>
#include<stdio.h>

/*
 评测结果 时间    结果  得分  题目  编译器     用时(ms)  内存(MB)  用户
2016-04-18 16:57    答案正确    30  08-图7   gcc     41  5   569985011
测试点结果 测试点   结果  得分/满分   用时(ms)  内存(MB)  要点提示
测试点1    答案正确    15/15   1   1   sample换数字,各种回路判断
测试点2    答案正确    2/2     2   1   M<N-1,不可能有生成树
测试点3    答案正确    2/2     1   1   M达到N-1,但是图不连通
测试点4    答案正确    5/5     41  5   最大N和M,连通
测试点5    答案正确    6/6     14  5   最大N和M,不连通
*/
struct data {
    int VerNode,Coast;
};
typedef struct LNode* Vertex;
struct LNode {
    struct data a[1001];
    int Left,Right;
};
void InsertV(Vertex,int ,int,int);
int Prim(Vertex ,int );
Vertex CreatV(int);
int Comp(const void*a,const void*b) {
    struct data x=*(struct data *)a;
    struct data y=*(struct data *)b;
    return x.Coast - y.Coast ;
}

int main() {
    int N;
    scanf("%d",&N);
    Vertex V=CreatV(N+1);

    int from,to,lenth,flag;
    for(int i=0; i<N*(N-1)/2; i++) {
        scanf("%d%d%d%d",&from,&to,&lenth,&flag);
        if(flag==0)
        InsertV(V,from,to,lenth);
        else InsertV(V,from,to,0);
    }
    for(int i=1; i<=N; i++) {
        qsort(V[i].a,V[i].Right-V[i].Left,sizeof(struct data),Comp);
//      printf("%d",i);
//      for(int j=V[i].Left;j<V[i].Right ;j++){
//          printf("{-%d=%d}",V[i].a[j].VerNode,V[i].a[j].Coast  );
//      }printf("\n");
    }

    printf("%d",Prim(V,N));
    return 0;
}

int Prim(Vertex V,int N) {
    int right=0,left=0,Node[1001],Coast=0;
    for(int i=1; i<=N; i++) {
        if(V[i].Right >V[i].Left) {
            if(right) {
                if(V[i].a[0].Coast <V[Node[0]].a[0].Coast) {
                    Node[0]=i;
                }
            } else {
                Node[right++]=i;
            }

        }
    }
    Coast+=V[Node[0]].a[0].Coast ;
    Node[right++]=V[Node[0]].a[0].VerNode;
    V[Node[0]].Left ++;
//  printf("-%d-",right);
    while(right<N) {
        int flag=-1;
        for(int i=0; i<right; i++) {
            if(V[Node[i]].Left<V[Node[i]].Right) {
                if(flag!=-1) {
                    if(V[Node[i]].a[V[Node[i]].Left].Coast <V[Node[flag]].a[V[Node[flag]].Left ].Coast)
                        flag=i;
                } else {
                    flag=i;
                }
            }
        }
        if(-1==flag)break;
        int i;
        for(i=0;i<right;i++){
            if(V[Node[flag]].a[V[Node[flag]].Left].VerNode==Node[i])break;
        }
        if(i==right){
            Node[right++]=V[Node[flag]].a[V[Node[flag]].Left].VerNode;
            Coast+=V[Node[flag]].a[V[Node[flag]].Left].Coast ;
        }
        V[Node[flag]].Left++;
    }
    for(int i=0;i<right;i++){
//      printf("[%d]",Node[i]);
    }
if(right>=N)return Coast;
    else return -1;
}

Vertex CreatV(int num) {
    Vertex V=(Vertex)malloc(sizeof(struct LNode)*num);
    for(int i=0; i<num; i++) {
        V[i].Left =0;
        V[i].Right =0;
    }

    return V;
}
void InsertV(Vertex V,int from,int to,int lenth) {
    V[from].a[V[from].Right].Coast =lenth;
    V[from].a[V[from].Right++].VerNode =to;
    V[to].a[V[to].Right].Coast =lenth;
    V[to].a[V[to].Right++].VerNode =from;
}

版权声明:写这些东西还是问了交流进步,如果你有不同的方法、见解,欢迎交流分享。文章中附的代码只传达当时我的一种做法,并非我认为最好的。

相关文章推荐

8-06. 畅通工程之局部最小花费问题(35)(最小生成树_Prim)(ZJU_PAT)

8-06. 畅通工程之局部最小花费问题(35)(最小生成树_Prim)(ZJU_PAT)

关于VC中的时间函数讨论

关于在VC中时间函数的事业问题在论坛有不少的帖子讨论,下面结合讨论结果和相关的知识做个总结。先从一个如何在程序中延时的问题谈起,延时的方法有方法一: 使用sleep函数,它的最小单位是1ms,如延时2...

PTA习题 畅通工程之局部最小花费问题(克鲁斯卡尔 最小生成树)

5-50 畅通工程之局部最小花费问题   (35分) 某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交...

5-50 畅通工程之局部最小花费问题 (35分)

5-50 畅通工程之局部最小花费问题   (35分) 某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交...

5-1 畅通工程之局部最小花费问题

5-1 畅通工程之局部最小花费问题   (35分) 某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交通...

PTA 5-25 畅通工程之局部最小花费问题

5-25 畅通工程之局部最小花费问题   (35分) 某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交通(但不...

PAT8-06. 畅通工程之局部最小花费问题

mst问题 #include #include #include using namespace std; const int N=104; struct road{ int src, dst,...

PTA-数据结构 5-50 畅通工程之局部最小花费问题 (35分)

某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交通(但不一定有直接的快速道路相连,只要互相间接通过快速路可达即可)。...

hdu——1233还是畅通工程(并查集 求最小路径长度 减枝)

?????? Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub...

畅通路问题之最小建造路

畅通路问题之最小建造路 描述 某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,...
  • ZJWSA
  • ZJWSA
  • 2017-05-20 16:35
  • 207
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)