[BZOJ4390][Usaco2015 dec]Max Flow(树上差分+lca)

19 篇文章 0 订阅
3 篇文章 0 订阅

题目描述

传送门

题解

某人用链剖水掉了,不过还有另外的思路时间完爆树链剖分。
对于每一次修改s,t,将s,t的权+1,将lca(s,t)和father[lca(s,t)]的权-1,一个点最终的答案就是这个点的子树权和。
本质上是差分。

代码

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define N 50005
#define sz 16

int n,k,x,y,s,t,r,ans;
int tot,point[N],nxt[N*2],v[N*2];
int h[N],father[N],sum[N],size[N],f[N][sz+5];

inline void addedge(int x,int y)
{
    ++tot; nxt[tot]=point[x]; point[x]=tot; v[tot]=y;
    ++tot; nxt[tot]=point[y]; point[y]=tot; v[tot]=x;
}
inline void build(int x,int fa,int dep)
{
    h[x]=dep; father[x]=fa;
    for (int i=1;i<sz;++i)
        f[x][i]=f[f[x][i-1]][i-1];
    for (int i=point[x];i;i=nxt[i])
        if (v[i]!=fa)
        {
            f[v[i]][0]=x;
            build(v[i],x,dep+1);
        }
}
inline int lca(int x,int y)
{
    if (h[x]<h[y]) swap(x,y);
    for (int i=sz-1;i>=0;--i)
        while (h[f[x][i]]>=h[y])
            x=f[x][i];
    if (x==y) return x;
    for (int i=sz-1;i>=0;--i)
        if (f[x][i]!=f[y][i])
            x=f[x][i],y=f[y][i];
    return f[x][0];
}
inline void dfs(int x,int fa)
{
    size[x]=sum[x];
    for (int i=point[x];i;i=nxt[i])
        if (v[i]!=fa)
        {
            dfs(v[i],x);
            size[x]+=size[v[i]];
        }
    ans=max(ans,size[x]);
}
int main()
{
    scanf("%d%d",&n,&k);
    for (int i=1;i<n;++i)
    {
        scanf("%d%d",&x,&y);
        addedge(x,y);
    }
    build(1,0,1);
    for (int i=1;i<=k;++i)
    {
        scanf("%d%d",&s,&t);
        r=lca(s,t);
        sum[s]++,sum[t]++,sum[r]--;
        if (r!=1) sum[father[r]]--;
    }
    dfs(1,0);
    printf("%d\n",ans);
}
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值