分类器中的S型函数

      对于了解机器学习相关知识的朋友,对一个函数肯定不陌生,没错,就是我今天要说的sigmoid(S型)函数,这个函数的图像如下:

                                                                  sigmoid

它的函数表达式为:

f(x)=11+exp(x)

       这个函数有很好的特性,它的定义域为实数域,而值域为(0,1),它的导数可以用自身的值计算出来: f(x)=f(x)(1f(x)) 。在机器学习领域里面到处可以看到它的身影,比如我们常用的 Logistic Regression以及 Softmax Regression分类器就是用它作为输出单元的响应激活函数。以及神经网络中的神经元激活函数也大多用它。为什么是这个函数呢?其实并不是人为故意选出来的,而是有严密的数学逻辑推理出来的。

       以二分类问题来说明,我们如果假设类密度符合 p(x|Ci) 高斯分布,并且具有共同的协方差矩阵,则判别式函数是线性的。即: gi(x)=wTix+wi0 ,这个不难证明。
       我们定义 y=p(C1|x),P(C2|x)=1y 。则在分类时,我们选择 C1 ,如果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值