对于了解机器学习相关知识的朋友,对一个函数肯定不陌生,没错,就是我今天要说的sigmoid(S型)函数,这个函数的图像如下:
它的函数表达式为:
f(x)=11+exp(−x)
这个函数有很好的特性,它的定义域为实数域,而值域为(0,1),它的导数可以用自身的值计算出来: f′(x)=f(x)(1−f(x)) 。在机器学习领域里面到处可以看到它的身影,比如我们常用的 Logistic Regression以及 Softmax Regression分类器就是用它作为输出单元的响应激活函数。以及神经网络中的神经元激活函数也大多用它。为什么是这个函数呢?其实并不是人为故意选出来的,而是有严密的数学逻辑推理出来的。
以二分类问题来说明,我们如果假设类密度符合 p(x|Ci) 高斯分布,并且具有共同的协方差矩阵,则判别式函数是线性的。即: gi(x)=wTix+wi0 ,这个不难证明。
我们定义 y=p(C1|x),P(C2|x)=1−y 。则在分类时,我们选择 C1 ,如果
⎧⎩⎨⎪⎪