JS-prototype

记录一下在工作中了解的内容:

 


prototype属性可算是JavaScript与其他面向对象语言的一大不同之处。 

prototype就是“一个给类的对象添加方法的方法”,使用prototype属性,可以给类动态地添加方法,以便在JavaScript中实现“ 继承”的效果。  


   具体来说,prototype是在 IE 4 及其以后版本引入的一个针对于某一类的对象的方法,当你用prototype编写一个类后,如果new一个新的对象,浏览器会自动把prototype中的内容替你附加在对象上。这样,通过利用prototype就可以在JavaScript中实现成员函数的定义,甚至是“继承”的效果。 

    对于javascript本身而言是基于对象的,任何元素都可以看成对象。然而类型和对象是不同的,而我们所讲的prototype属性即是基于类型的一种属性。对于prototype的基本使用就如对象的创建及属性赋值一样的简单。直接通过赋值操作即可完成属性的创建。

关于prototype,理解这个很有必要 :

        * 可以在类型上使用proptotype来为类型添加行为。这些行为只能在类型的实例上体现。

        * JS中允许的类型有Array, Boolean, Date, Enumerator,Error, Function, Number, Object, RegExp, String

        * 在实例上不能使用prototype,否则会发生编译错误

        * 可以为类型定义“静态”的属性和方法,直接在类型上调用即可

* 实例不能调用类型的静态属性或方法,否则发生对象未定义的错误

* 可以在外部使用prototype为自定义的类型添加属性和方法。

* 也可以在对象上改变或增加方法。(和普遍的面向对象的概念不同)

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值