# Clarke and digits

Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 88    Accepted Submission(s): 44

Problem Description
Clarke is a patient with multiple personality disorder. One day, Clarke turned into a researcher, did a research on digits.
He wants to know the number of positive integers which have a length in [l,r] and are divisible by 7 and the sum of any adjacent digits can not be k.

Input
The first line contains an integer T(1T5), the number of the test cases.
Each test case contains three integers l,r,k(1lr109,0k18).

Output
Each test case print a line with a number, the answer modulo 109+7.

Sample Input
2 1 2 5 2 3 5

Sample Output
13 125 Hint: At the first sample there are 13 number $7,21,28,35,42,49,56,63,70,77,84,91,98$ satisfied.

dp[i][j]表示长度为i取模为7的种类数, 参考数据范围, 直接计算会TLE, 用矩阵快速幂来加速运算, 第一次做矩阵快速幂的题目, 参考了题

AC代码:

#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
#include "cmath"
#include "utility"
#include "map"
#include "set"
#include "vector"
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;
const int MAXN = 100;
struct Matrix
{
/* data */
int row, col, dp[MAXN][MAXN];
void init(int r, int c) {
row = r;
col = c;
memset(dp, 0, sizeof(dp));
}
}x, y, z;
int l, r, k;
void magic(int k)
{
for(int i = 1; i < 10; ++i)
x.dp[i * 7 + i % 7][0]++;
for(int i = 0; i < 10; ++i)
for(int j = 0; j < 7; ++j) {
int u = i * 7 + j;
for(int m = 0; m < 10; ++m)
if(i + m != k) {
int v = m * 7 + (j * 10 + m) % 7;
y.dp[v][u]++;
}
}
for(int i = 0; i <= 10; ++i)
y.dp[70][i * 7] = 1;
}
void mul(const Matrix &a, const Matrix &b, Matrix &c)
{
z.init(a.row, b.col);
for(int i = 0; i < z.row; ++i)
for(int j = 0; j < z.col; ++j)
for(int k = 0; k < a.col; ++k)
z.dp[i][j] = (z.dp[i][j] + 1LL * a.dp[i][k] * b.dp[k][j] % MOD) % MOD;
c = z;
}
int power_mod(Matrix a, Matrix b, int n)
{
while(n > 0) {
if(n & 1) mul(b, a, a);
mul(b, b, b);
n >>= 1;
}
return a.dp[70][0];
}
int main(int argc, char const *argv[])
{
int t;
scanf("%d", &t);
while(t--) {
x.init(MAXN, 1);
y.init(MAXN, MAXN);
scanf("%d%d%d",&l, &r, &k);
magic(k);
int ans = (power_mod(x, y, r) - power_mod(x, y, l - 1) + MOD) % MOD;
printf("%d\n", ans);
}
return 0;
}

• 本文已收录于以下专栏：

举报原因： 您举报文章：BestCoder Round #62 (div.2) HDOJ5564 Clarke and digits(dp + 快速幂) 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)