关闭

BestCoder Round #62 (div.2) HDOJ5564 Clarke and digits(dp + 快速幂)

1001人阅读 评论(0) 收藏 举报
分类:

Clarke and digits

Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 88    Accepted Submission(s): 44


Problem Description
Clarke is a patient with multiple personality disorder. One day, Clarke turned into a researcher, did a research on digits. 
He wants to know the number of positive integers which have a length in [l,r] and are divisible by 7 and the sum of any adjacent digits can not be k.
 

Input
The first line contains an integer T(1T5), the number of the test cases. 
Each test case contains three integers l,r,k(1lr109,0k18).
 

Output
Each test case print a line with a number, the answer modulo 109+7.
 

Sample Input
2 1 2 5 2 3 5
 

Sample Output
13 125 Hint: At the first sample there are 13 number $7,21,28,35,42,49,56,63,70,77,84,91,98$ satisfied.
 



题目链接:点击打开链接

dp[i][j]表示长度为i取模为7的种类数, 参考数据范围, 直接计算会TLE, 用矩阵快速幂来加速运算, 第一次做矩阵快速幂的题目, 参考了题

解, 1LL防止数据溢出出错, 转态转移方程: z.dp[i][j] = (z.dp[i][j] + 1LL * a.dp[i][k] * b.dp[k][j] % MOD) % MOD

AC代码:

#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
#include "cmath"
#include "utility"
#include "map"
#include "set"
#include "vector"
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;
const int MAXN = 100;
struct Matrix
{
	/* data */
	int row, col, dp[MAXN][MAXN];
	void init(int r, int c) {
		row = r;
		col = c;
		memset(dp, 0, sizeof(dp));
	}
}x, y, z;
int l, r, k;
void magic(int k)
{
	for(int i = 1; i < 10; ++i)
		x.dp[i * 7 + i % 7][0]++;
	for(int i = 0; i < 10; ++i)
		for(int j = 0; j < 7; ++j) {
			int u = i * 7 + j;
			for(int m = 0; m < 10; ++m) 
				if(i + m != k) {
					int v = m * 7 + (j * 10 + m) % 7;
					y.dp[v][u]++;
			}
		}
	for(int i = 0; i <= 10; ++i)
		y.dp[70][i * 7] = 1;
}
void mul(const Matrix &a, const Matrix &b, Matrix &c)
{
	z.init(a.row, b.col);
	for(int i = 0; i < z.row; ++i)
		for(int j = 0; j < z.col; ++j)
			for(int k = 0; k < a.col; ++k)
				z.dp[i][j] = (z.dp[i][j] + 1LL * a.dp[i][k] * b.dp[k][j] % MOD) % MOD;
	c = z;
}
int power_mod(Matrix a, Matrix b, int n)
{
	while(n > 0) {
		if(n & 1) mul(b, a, a);
		mul(b, b, b);
		n >>= 1;
	}
	return a.dp[70][0];
}
int main(int argc, char const *argv[])
{
	int t;
	scanf("%d", &t);
	while(t--) {
		x.init(MAXN, 1);
		y.init(MAXN, MAXN);
		scanf("%d%d%d",&l, &r, &k);
		magic(k);
		int ans = (power_mod(x, y, r) - power_mod(x, y, l - 1) + MOD) % MOD;
		printf("%d\n", ans);
	}
	return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:258355次
    • 积分:7401
    • 等级:
    • 排名:第3056名
    • 原创:291篇
    • 转载:7篇
    • 译文:0篇
    • 评论:14条
    联系方式

    QQ: 200756783

    WeChat: 7632592

    Mail: gkhack@qq.com

    WeiBo: GameKingHack

    博客专栏