BestCoder Round #62 (div.2) HDOJ5564 Clarke and digits(dp + 快速幂)

Clarke and digits

Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 88    Accepted Submission(s): 44


Problem Description
Clarke is a patient with multiple personality disorder. One day, Clarke turned into a researcher, did a research on digits. 
He wants to know the number of positive integers which have a length in [l,r] and are divisible by 7 and the sum of any adjacent digits can not be k.
 

Input
The first line contains an integer T(1T5), the number of the test cases. 
Each test case contains three integers l,r,k(1lr109,0k18).
 

Output
Each test case print a line with a number, the answer modulo 109+7.
 

Sample Input
2 1 2 5 2 3 5
 

Sample Output
13 125 Hint: At the first sample there are 13 number $7,21,28,35,42,49,56,63,70,77,84,91,98$ satisfied.
 



题目链接:点击打开链接

dp[i][j]表示长度为i取模为7的种类数, 参考数据范围, 直接计算会TLE, 用矩阵快速幂来加速运算, 第一次做矩阵快速幂的题目, 参考了题

解, 1LL防止数据溢出出错, 转态转移方程: z.dp[i][j] = (z.dp[i][j] + 1LL * a.dp[i][k] * b.dp[k][j] % MOD) % MOD

AC代码:

#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
#include "cmath"
#include "utility"
#include "map"
#include "set"
#include "vector"
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;
const int MAXN = 100;
struct Matrix
{
	/* data */
	int row, col, dp[MAXN][MAXN];
	void init(int r, int c) {
		row = r;
		col = c;
		memset(dp, 0, sizeof(dp));
	}
}x, y, z;
int l, r, k;
void magic(int k)
{
	for(int i = 1; i < 10; ++i)
		x.dp[i * 7 + i % 7][0]++;
	for(int i = 0; i < 10; ++i)
		for(int j = 0; j < 7; ++j) {
			int u = i * 7 + j;
			for(int m = 0; m < 10; ++m) 
				if(i + m != k) {
					int v = m * 7 + (j * 10 + m) % 7;
					y.dp[v][u]++;
			}
		}
	for(int i = 0; i <= 10; ++i)
		y.dp[70][i * 7] = 1;
}
void mul(const Matrix &a, const Matrix &b, Matrix &c)
{
	z.init(a.row, b.col);
	for(int i = 0; i < z.row; ++i)
		for(int j = 0; j < z.col; ++j)
			for(int k = 0; k < a.col; ++k)
				z.dp[i][j] = (z.dp[i][j] + 1LL * a.dp[i][k] * b.dp[k][j] % MOD) % MOD;
	c = z;
}
int power_mod(Matrix a, Matrix b, int n)
{
	while(n > 0) {
		if(n & 1) mul(b, a, a);
		mul(b, b, b);
		n >>= 1;
	}
	return a.dp[70][0];
}
int main(int argc, char const *argv[])
{
	int t;
	scanf("%d", &t);
	while(t--) {
		x.init(MAXN, 1);
		y.init(MAXN, MAXN);
		scanf("%d%d%d",&l, &r, &k);
		magic(k);
		int ans = (power_mod(x, y, r) - power_mod(x, y, l - 1) + MOD) % MOD;
		printf("%d\n", ans);
	}
	return 0;
}


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/GKHack/article/details/49903549
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

BestCoder Round #62 (div.2) HDOJ5564 Clarke and digits(dp + 快速幂)

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭