线性分类器-KNN、多类SVM、Softmax

本文只是记录一下实现的代码,具体的思想还请看cs231n的课程笔记,其讲解的非常好,智能单元翻译的也很不错。 一、CIFAR-10数据集: 图1 CIFAR-10示例 二、KNN 图2 KNN分类器示例   如图所示,K的取值不同得出来的分类结果也可能是不同的,因此需要对k进行寻参,找出在训练机上最好的k,来进行测试。   求两幅图片的相似性,KNN使用的是距离度量,但...
阅读(280) 评论(0)

python nditer---迭代数组

迭代对象nditer提供了一种灵活访问一个或者多个数组的方式。 单个数组的迭代(Single Array Iteration): 迭代器最基本的任务的可以完成对数组元素的访问,迭代器接口可以一个接一个地提供的每一个元素。 例如: a = np.arange(6).reshape(2, 3) for x in np.nditer(a): print x, " " 0 1 2 3...
阅读(827) 评论(0)

numpy.random

1、numpy.random.rand(d0, d1, ....dn):     生成指定形状的数组,其元素值是在均匀分布[0, 1]之间随机生成,其中d0, ...dn表示的是数组的大小,如果不指定大小,默认返回一个随机数值。数组默认的返回类型是float. 例如: w0 = np.random.rand() print w0, "\n" w00 = np.random.rand(2, ...
阅读(178) 评论(0)

Python 爬虫笔记(2)

我们如何使用Python而不是浏览器,利用有道翻译,来翻译文本?   我们首先打开有道,右键,点击“检查”,或者“审查元素”,我们可以看到网页的源代码,如图1所示:   我们点击network,如图2:   找到translate?....如图3,然后点击:   然后在点击preview,如图4,我们可以看到我们要翻译的语句,和翻译的结果。   我...
阅读(188) 评论(0)

Python 爬虫笔记(1)

import urllib.request 访问网址,打开网页,方法: urllib.request.urlopen(url, data=None, [timeout, ]*, cafile=None, capath=None, cadefault=False, context=None) 其中url,可以是一个字符串string(也就是网址),也可以是一个Request对象...
阅读(355) 评论(0)

Python 画二维和三维散点同心圆

我们利用Python先画二维的散点圆:   我们的圆上的点,采取圆的参数方程来取。我们根据取theta的步长来决定圆上的散点的松散度。 import numpy as np import matplotlib.pyplot as plt r = 1.0 a, b = (0., 0.) theta = np.arange(0, 2*np.pi, 0.3) x = a + r * np.cos...
阅读(568) 评论(0)

开关电灯(济南联通面试题)

今天有个同学面试联通问了我一个面试题,貌似这个题当过很多面试题,不难,随手记录一下吧。 题目描述:     有N个灯放在一起,从1到N依次顺序编号,有N个人也从1到N依次编号。1号将灯全部熄灭,2号将,凡是2的倍数的灯打开;3号将凡是3的倍数的灯作相反处理(该灯如为打开,则将他关闭;如果关闭,则将它打开)。以后的人都和3号一样,将凡是自己编号倍数的灯作相反处理。 编程实现:第N个人操作后...
阅读(119) 评论(0)

支持向量机(SVM)(四)----SMO

我们前几节说了线性可分,以及在低维线性不可分,但是在高维是线性可分的。还有一种情况,如下图:     这种因奇异点而造成的划分平面不合理的移动,不是我们所想的,或者因为个别奇异点导致线性不可分,其余的大部分的点都是线性可分的,如果因此 就映射到高维来解决,那么也不值当,如下的情况:     这些情况因为outliers而造成了线性不可分,或者导致划分超平面不是很明确。同样为了降...
阅读(271) 评论(0)

支持向量机(SVM)(三)----核函数及正则化

上一节最后我们说到我们根据求得的,可求得,,然后求出决策函数,但是我们知道: 是的函数,我们也许不必把带入上式来求解,我们直接把上式带入决策函数可有:     假如我们已经求得最优的,在作出预测的时候,我们可以只进行输入数据x与训练样本的内积即可。在转化为对偶条件的时候,我们知道要满足KKT条件,KKT条件中有一个是: 其中:      由此可以...
阅读(599) 评论(0)

支持向量机(SVM)(二)----对偶

==============================================     本文根据Andrew NG的课程来梳理一下svm的思路。如有错误,欢迎指正。 ==============================================     上小节,我们说到如何求该凸优化问题,高数中我们学过,可以利用拉格朗日乘子法,来求解有约束的问题。原问题为...
阅读(226) 评论(0)

支持向量机(SVM)(一)----介绍SVM

=========================================     本文根据Andrew NG的课程来梳理一下svm的思路。如有错误,欢迎指正。 ==============================================     支持向量机(Support Vector Machine,SVM)是一个有监督的学习模型,通常用来进行模式识别、分类以及回...
阅读(346) 评论(0)

KNN算法及其实现

K-邻近算法(k-NearestNeighbor,KNN),存在某一样本集,已经知道样本和对应的类别,当输入一个没有类别标识的数据时,找出与其“最相似”的K个样本,在这k个样本中,哪个类别的样本个数最多,我们就把该未知数据的类别归为此类。其中的相似性,可以利用距离来度量,而衡量距离的方法,可以是欧氏距离,闵可夫斯基距离,曼哈顿距离等等。     KNN算法步骤:     1,与处理数据...
阅读(194) 评论(0)

python sort、sorted高级排序技巧

这篇文章主要介绍了python sort、sorted高级排序技巧,本文讲解了基础排序、升序和降序、排序的稳定性和复杂排序、cmp函数排序法等内容,需要的朋友可以参考下 Python list内置sort()方法用来排序,也可以用python内置的全局sorted()方法来对可迭代的序列排序生成新的序列。 1)排序基础 简单的升序排序是非常容易的。只需要调用s...
阅读(275) 评论(0)

主成分分析(PCA)

当我们研究某个问题的时候,该问题有很多个变量,而且某些变量与变量之间存在一定的相关关系,如果两个变量存在相关关系,那么这两个变量之间存在着重叠信息,而这就造成了数据的冗余。比如一群学生,Boy和Girl,他们的性别我们可以用二维数组来表示,对于某个学生,Boy 可表示成:[1][0],Girl可表示为[0][1],其实不必,我们可以用一维数组来表示,男生为1,女孩为0。我们为了除去一组变量的相关性...
阅读(175) 评论(0)

反向传播算法(BackPropagation,BP)

本文参考《神经网络和深度学习》,旨在说明BP算法是怎样的一个过程。在一个多层的神经网络中,反向传播算法就是不断的学习这个网络的权值和偏值,采用梯度下降法使得该神经网络的输出值与真实的目标值之间的误差最小。   1,那么为什么更新权值和偏值可以使得代价函数最小化呢?   2,以及如何更新权值和偏值呢?   由于该算法使用了很多的符号,这里需要解释一下各个符号的意义。   表示第层的第k个神经...
阅读(517) 评论(0)
490条 共33页首页 上一页 1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:255734次
    • 积分:7050
    • 等级:
    • 排名:第3339名
    • 原创:471篇
    • 转载:19篇
    • 译文:0篇
    • 评论:16条