剑指offer 跳台阶&&变态跳台阶

本文详细解析了青蛙跳台阶的经典算法问题,包括基本跳法和扩展跳法的动态规划解决方案,探讨了不同条件下的跳跃策略及其实现代码。

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

    int jumpFloor(int number) {
    /**如果有一级台阶 有一种跳法;有两级台阶,有两种跳法
    1.若number=1,则total = 1;
    2.若number=2,则total = 2;
    3.若number>=3,则total = jumpFloor(number-1)+jumpFloor(number-2)
    4.本题的主要思路不是从number到1的分析 而是从1到number的分析 算法时间复杂度o(n) 需要5个辅助空间 所以空间复杂度是o(1)
    */
    int i = 0;
    int result[3] = { 0,1,2 };
    int step2 = result[1];//存小的值
    int step1 = result[2];//存大的值
    int stepN = 0;
    if (number <= 2)return result[number];
    for (i = 3; i <= number; i++) {
        stepN = step1 + step2;
        step2= step1;
        step1 = stepN;
    }
    return stepN;
}

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

 int jumpFloorII(int number) {
    unsigned long long counter[101] = { 0 };
    int i = 0;
    counter[0] = 1;
    counter[1] = 1;
    counter[2] = 2;
    int calculatedIndex = 2;

    if (number <= calculatedIndex)
        return counter[number];

    if (number > 100)
        number = 100;

    for (i = calculatedIndex + 1; i <= number; i++) {
        counter[i] = 2 * counter[i - 1];
    }
    calculatedIndex = number;
    return counter[number];
}

今天太累了,脑瓜子转不动了,改天精神了写一下原始跳台阶问题的动态规划解法以及变态问题的解析。

内容概要:本文围绕“基于蓄电池进行调峰和频率调节研究”,提出了一种采用超线性增益的联合优化方法,并通过Matlab代码实现相关仿真与验证。研究聚焦于电力系统中蓄电池在调峰(平衡负荷波动)和频率调节(维持电网稳定)双重功能下的协调优化问,通过构建数学模型,引入超线性增益机制提升控制精度与响应效率,从而提高储能系统的运行经济性与电网稳定性。文中还提供了完整的代码资源链接,便于复现与进一步研究,属于电力系统智能管理领域的典型技术应用。; 适合人群:具备电力系统基础知识、储能技术背景及一定Matlab编程能力基于蓄电池进行调峰和频率调节研究【超线性增益的联合优化】(Matlab代码实现)的高校研究生、科研人员或从事新能源系统优化的工程技术人员;尤其适合开展储能调度、微电网优化等相关课研究的学习者。; 使用场景及目标:① 掌握蓄电池在电力系统调峰与调频中的协同工作机制;② 学习并复现基于超线性增益的联合优化算法设计与建模方法;③ 利用Matlab/Simulink平台实现储能系统优化控制策略的仿真分析,服务于科研论文复现、项目开发或算法改进。; 阅读建议:建议结合文中提到的YALMIP工具包和网盘资源,边阅读边运行代码,重点关注目标函数构建、约束条件设置及优化求解流程;同时可对比传统线性增益方法,深入理解超线性增益带来的性能提升机制。
内容概要:本文介绍了一种基于稀疏贝叶斯学习(SBL)的轴承故障诊断方法,提出两种群稀疏学习算法用于提取故障脉冲信号。第一种算法仅利用故障脉冲的群稀疏性,第二种进一步结合其周期性行为,以提升故障特征提取的准确性与鲁棒性。文档提供了完整的Matlab代码实现,适用于振动信号分析与早期故障检测,具有较强的工程应用价值。此外,文中还附带了多个科研领域的仿真资源链接,涵盖电力系统、信号处理、机器学习、路径规划等多个方向,突出MATLAB在科研仿真中的广泛应用。; 适合人群:具备一定信号处理或机械故障诊断基础,熟悉Matlab编程,从【轴承故障诊断】一种用于轴承故障诊断的稀疏贝叶斯学习(SBL),两种群稀疏学习算法来提取故障脉冲,第一种仅利用故障脉冲的群稀疏性,第二种则利用故障脉冲的额外周期性行为(Matlab代码实现)事科研或工程应用的研究生、工程师及科研人员;对智能诊断、稀疏表示、贝叶斯学习感兴趣的技术人员。; 使用场景及目标:①应用于旋转机械(如轴承、齿轮箱)的早期故障检测与健康监测;②研究群稀疏性与周期性先验在信号分离中的建模方法;③复现SBL算法并拓展至其他故障特征提取任务;④结合所提供的网盘资源开展相关领域仿真研究与算法开发。; 阅读建议:建议结合Matlab代码逐行理解算法实现细节,重点关注群稀疏建模与周期性约束的数学表达;推荐对比两种算法的实验结果以深入理解其性能差异;同时可利用提供的网盘资源拓展学习其他仿真技术,提升综合科研能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值