剑指Offer_编程题(C#实现)_变态跳台阶

这是一篇关于编程题目的博客,讨论了变态跳台阶问题,即一只青蛙可以跳1到n级台阶的不同跳法。解题思路采用逆推和动态规划,通过递推公式f(n) = 2*f(n-1)来求解。博客中提供了两种不同的C#实现方法。
摘要由CSDN通过智能技术生成

题目:变态跳台阶

题目描述

一只青蛙,他比较变态,一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

解题思路

可以用逆推的思想,跳n级台阶,可以从n-1级跳上来,也可以从n-2级跳上来,从n-3级跳上来,依次下去,从第1级跳上去,或直接跳上去,所以,跳n级台阶的方法数相当于其它所有台阶数的方法的总和再加上从0级跳上去,表达式为 f(n) = f(n-1) + f(n-2) +…+ f(2) + f(1) + 1。
而f(n-1)=f(n-2)+… +f(1)+1。

将两式想减可以求出递推公式,也即是 f(n)-f(n-1)=f(n-1),即可得到动态规划法的公式f(n)=2*f(n-1)。

参考代码

方法1

class Solution
{
    public int jumpFloorII(int number)
    {
        // write code here
        if(number ==0 || number == 1)
            return 1;
        else if(number == 2)
            return 2;
        else
        {
            int sum = 0;
            for(int i=0;i<number;i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值