Google笔试:Watson and Intervals

原创 2016年08月30日 13:04:10

问题

这是今年(2016)google校招的笔试题(Round B的C题),难度比acm的低,但是也不简单。
原题链接:http://code.google.com/codejam/contest/5254487/dashboard#s=p2

问题意思是:给你一堆区间,让你选择一个来去掉,使得剩下的区间覆盖到的整数点最少。

比如这些区间是{[2, 5], [3, 5], [4, 7]},
1)去掉[2, 5]的话,剩下的区间覆盖的整数点为3,4,5,6,7,有5个;
2)去掉[3, 5]的话,剩下的区间覆盖的整数点为2,3,4,5,6,7,有7个;
3)去掉[4, 7]的话,剩下的区间覆盖的整数点为2,3,4,5,有4个。
所以很明显应该去掉最后一个区间,使得剩下的区间覆盖到的整数点最少。

思路

我的想法是,先算出所有区间覆盖到的整数点数量,这个很简单,参考上一篇博客:区间覆盖与合并

然后,计算每个区间对于整体的独立贡献,找出最大的独立贡献,删掉相应的区间,剩下的自然最少了!

维护两个值:Tail(前面所有区间的右端点的最大值),secondTail(前面所有区间的端点中的第二大的值)。
(secondTail, Tail]这段区间表示还没被其它区间覆盖到的!所以想要计算每个区间对于整体的独立贡献的话,用这个区间来计算就好了。

举个例子,[1, 10], [2, 4], [7, 15],Tail和secondTail的初始值为1-1=0,则:
第一步:[1, 10],Tail变成10,secondTail变成1-1=0(注意(secondTail, Tail]是一个左开右闭区间)。

第二步:[2, 4],此时我们发现2比secondTail大,那么(secondTail, 2)这段区间就是第一个区间的独立贡献了。因为这段区间,即[1, 1]没有被任何其它区间覆盖到。
然后考虑Tail和secondTail的更新,4比10小,所以此时Tail还是10,secondTail呢?应该要变成4!因为[1, 1]已经计算过了,而[2, 4]被第二个区间占用了,剩下的就是(4, 10]了!所以secondTail应该是4。

第三步,[7, 15],我们发现7比secondTail大,所以(4, 7)这段区间也是第一个区间的独立贡献,没有别的区间覆盖到,给它加上。
再考虑Tail和secondTail的更新,15比10大,所以此时Tail应该是15。secondTail呢?应该要变成10!因为[1, 1]已经计算过了,而[2, 4]被第二个区间占用了,[5, 6]也被计算过了,[7, 10]被第三个区间占用了,剩下的就是(10, 15]了!所以secondTail应该是10,并且此时开始,计算独立贡献的应该是加到第三个区间上,而不是第一个区间了!

最后的结果,三个区间的独立贡献值分别是:3(点1,5,6),0,5(点11,12,13,14,15)。

上面的举例所说的操作是挺明显的,不过具体的规则是怎样的呢?

更新独立贡献值

由于我们已经知道,目前还没被其它区间覆盖的区间是(secondTail,Tail],那么对于当前这个区间[F, S],怎么样才会更新独立贡献值呢?

如果F比secondTail小会怎样?那就是覆盖了(secondTail, S]这一段,并不会有没有覆盖到的点可以来更新!

所以应该是F大于secondTail才会有更新的!(看上面的例子)

我们现在知道secondTail < F,F <= S,而secondTail <= Tail,四者的大小关系不是唯一的,所以分类讨论一下:

大小关系 增加的独立贡献 secondTail的新值 Tail的新值
secondTail < F <= S <= Tail (secondTail, F) S Tail
secondTail < F <= Tail < S (secondTail, F) Tail S
secondTail <= Tail < F <= S (secondTail, Tail] F S
总结规律 (secondTail, min(Tail, F-1)] 四者中的第二大者 四者中的最大者

更新secondTail和Tail的值

上面讨论了有更新时候secondTail和Tail的更新规律,下面就看一下没有更新时,两者的更新规律。

此时没有更新,那么必然有F <= secondTail,所以四者的大小关系可能是:

大小关系 secondTail的新值 Tail的新值
F <= S <= secondTail <= Tail secondTail Tail
F <= secondTail < S <= Tail S Tail
F <= secondTail <= Tail < S Tail S
总结规律 四者中的第二大者 四者中的最大者

上面这两张表的更新规则是按照(secondTail, Tail]的意义来决定的,也就是要让(secondTail, Tail]这段区间保持没被当前的任何区间覆盖到!!!

再举个例子吧,就上表的第二行, F <= secondTail < S <= Tail,很明显(secondTail, S]这段区间已经被当前区间[F, S]覆盖到了,所以secondTail应该被更新为S,再验证一下(S, Tail]这段区间是不是还没被其它区间覆盖到?是滴!

细节

最后再说两个点,第一,可以发现,上面两个表中,secondTail和Tail的更新规律都是一样的,所以可以合并。

第二,如何轻松找出四个数字中最大和第二大的数字呢?
排序后选?sb了吧。
这里只要利用好已知的大小关系,是可以很优雅写出来的。
我们已知,secondTail <= Tail,并且F <= S。
那么最大的数字只可能在S和Tail中产生,对不对?

那么第二大呢?
如果S >= Tail,那么第二大的数字只能在F和Tail之间产生(因为肯定不可能是secondTail,Tail比secondTail大)。
否则S < Tail,那么第二大的数字只能在S和secondTail之间产生(因为肯定不可能是F,S还比F大啊)。

可以这样写:

if (S >= Tail)
    secondTail = max(Tail, F);
else
    secondTail = max(secondTail, S);
Tail = max(Tail, S);

代码

代码其实很好写了,因为规律都推断出来了!!!

LL cover(RangeList& intervals) {
    // 注意初始值
    LL Tail = intervals[0].first - 1, secondTail = Tail, TailIndex = -1;
    vector<LL> maxPoints(intervals.size());

    for (int i = 0; i < intervals.size(); ++i) {
        // 更新独立贡献值
        if (i > 0 && intervals[i].first > secondTail) {
            maxPoints[TailIndex] += min(Tail, intervals[i].first - 1) - (secondTail + 1) + 1;
        }

        // 更新secondTail值
        if (Tail > intervals[i].second)
            secondTail = max(secondTail, intervals[i].second);
        else
            secondTail = max(Tail, intervals[i].first-1);

        // 更新Tail值
        if (intervals[i].second > Tail) {
            Tail = intervals[i].second;
            TailIndex = i;
        }
    }

    // 别忘了最后还得再算一次!
    maxPoints[TailIndex] += Tail - (secondTail+1) + 1;

    // 找出最大的独立贡献值
    LL maxPoint = 0;
    for (int i = 0; i < maxPoints.size(); ++i) {
        maxPoint = max(maxPoint, maxPoints[i]);
    }
    return maxPoint;
}

整道题的代码是:

#include <iostream>
#include <stdio.h>
#include <string>
#include <vector>
#include <algorithm>
#include <map>
#include <set>
using namespace std;

typedef long long LL;
typedef vector<pair<LL, LL> > RangeList;


LL coverAll(RangeList& intervals) {
    LL left = intervals[0].first, right = intervals[0].second;
    LL area = 0;
    for (int i = 1; i < intervals.size(); ++i) {
        // 前面自成一个区间,那么就此分开
        if (intervals[i].first > right) {
            area += right - left + 1;
            left = intervals[i].first;
            right = intervals[i].second;
        } else if (intervals[i].second > right) {
            right = intervals[i].second;
        }
    }
    area += right - left + 1;

    return area;
}


LL cover(RangeList& intervals) {
    // 注意初始值
    LL Tail = intervals[0].first - 1, secondTail = Tail, TailIndex = -1;
    vector<LL> maxPoints(intervals.size());

    for (int i = 0; i < intervals.size(); ++i) {
        // 更新独立贡献值
        if (i > 0 && intervals[i].first > secondTail) {
            maxPoints[TailIndex] += min(Tail, intervals[i].first - 1) - (secondTail + 1) + 1;
        }

        // 更新secondTail值
        if (Tail > intervals[i].second)
            secondTail = max(secondTail, intervals[i].second);
        else
            secondTail = max(Tail, intervals[i].first-1);

        // 更新Tail值
        if (intervals[i].second > Tail) {
            Tail = intervals[i].second;
            TailIndex = i;
        }
    }

    // 别忘了最后还得再算一次!
    maxPoints[TailIndex] += Tail - (secondTail+1) + 1;

    // 找出最大的独立贡献值
    LL maxPoint = 0;
    for (int i = 0; i < maxPoints.size(); ++i) {
        maxPoint = max(maxPoint, maxPoints[i]);
    }
    return maxPoint;
}


int main() {
    int t;
    cin >> t;
    for (int time = 1; time <= t; ++time) {
        LL N, L1, R1, A, B, C1, C2, M;
        cin >> N >> L1 >> R1 >> A >> B >> C1 >> C2 >> M;
        RangeList intervals;
        for (int i = 0, x = L1, y = R1; i < N; ++i) {
            intervals.push_back(make_pair(min(x, y), max(x, y)));
            LL x_last = x, y_last = y;
            x = (A * x_last + B * y_last + C1) % M;
            y = (A * y_last + B * x_last + C2) % M;
        }
        sort(intervals.begin(), intervals.end());
        cout << "Case #" << time << ": " << coverAll(intervals) - cover(intervals) << endl;
    }

    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Problem C. Watson and Intervals Google APAC 2017 University Test Round B

这一题现将区间转化成左闭又开的形式[L,R),然后将所有的区间左右端点按照从小大大排序。从左往右扫一遍,遇到区间左端点+1,区间右端点-1,就得到每个点被区间覆盖的次数。 之后可以通过map记录覆盖次...

Round B APAC Test 2017 Problem C. Watson and Intervals

Problem C. Watson and Intervals Sherlock and Watson have mastered the intricacies of the language...

Problem B. Sherlock and Watson Gym Secrets Google APAC 2017 University Test Round B

这一题比赛时是懵逼的,直接暴力+快速幂过了小数据。 后来得知,因为mod的性质,(i^A)%K=(i%K)^A,所以只要枚举[0,K-1]的值就可以了。[K,N]范围内的i,mod之后结果和[0,K...

Google中国2014校园招聘笔试Round B China New Grad Test Problem B. Meet and party

Problem Little Sin lives in a Manhattan-grid city, a 2D plane where people can only go north, west, ...

Round B APAC Test 2017 Problem B. Sherlock and Watson Gym Secrets

Problem B. Sherlock and Watson Gym Secrets Watson and Sherlock are gym buddies. Their gym trainer ...

How Did Watson Answer —— Final Merging and Ranking

一、摘要Watson答题处理流程的最后一步是答案的合并与排序。在这一步中,实现了按步骤划分并且可以逐次的机器学习框架,可以利用每一步中候选答案的评分,按照多个特征综合评分。 Watson中使用机器学...

Merge Intervals And Insert Interval -- Leetcode

leetcode 中的两个集合操作题目: Merge Intervals , Insert Interval

56. Merge Intervals\113. Path Sum II\211. Add and Search Word - Data structure design

Merge Intervals 题目描述 代码实现 Path Sum II 题目描述 代码实现56. Merge Intervals题目描述Given a collection of interval...

Codeforces 367E Sereja and Intervals DP

题目大意: 就是现在在一个长度为m的区间上找出一组区间, 这组区间要有n个并且其中任意两个区间不存在包含关系且必须存在至少一个区间其左边界的值是x (1 大致思路: 就是一个dp.....

2011Google校园招聘笔试题

原文链接:谢谢作者 1、已知两个数字为1~30之间的数字,甲知道两数之和,乙知道两数之积,甲问乙:“你知道是哪两个数吗?”乙说:“不知道”。乙问甲:“你知道是哪两个数吗?”甲说:“也不知道”。于...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)