关闭

求数组中最长递增子序列

标签: 编程之美遍历校园招聘
123人阅读 评论(0) 收藏 举报
分类:

原文链接:http://blog.chinaunix.net/uid-26884465-id-3358357.html

编程之美这本书里面就有关于这道题的一些解法,求一个一位数组中的最长序列的长度。例如,在序列1,3,2中,最长递增序列是1,3.这道题,也是腾讯2012校园招聘中的一道题,其实,这道题符合无后效性的要求,我们可以任取从从数组开始时开始的任意子序列,这个子序列的状态无法直接影响将来的决策。换句话说,每个状态是过去历史的一个完整总结。我们可以定义一个存放每个子序列的最长序列值的数组L,L里面元素的初始值为1,那么不断增长子序列,当遍历到元素i时,如果i代表的元素比前面出现的子序列中的某一元素大的话,那么对应的L数组里面的值就要增一。对应的代码如下.

for(int i=0;i<n;i++)
{
     L[i] = 1; //初始化长度为1
     for(int j=0;j<i;j++)
{
      if(array[i] > array[j]&&L[i]<l[j]+1)
  {
          L[i] = L[j] + 1;
        }
}
}
return max(L);
}
这种方法对应的时间复杂度是O(N2+N)= O(N2);

其实,我们做到这里的时候,算是初步完成了,但是,我们有时会想,是不是可以进行一点优化,让速度更快?
编程之美里面提供了一中较好的方法,是这样的,它提前记录了前i个元素中,每个子序列中的最小值,MIN(1),MIN(2).。。。。。然后,对于第i+1个元素,那么只要遍历这些元素,然后对应的最长值增一就行了。好,我们先看一下代码。

MIN[0] = min(array) - 1;//边界,用于子序列为1时可以比较
MIN[1] = array[0];//初始值。
for(0...n-1)
L[i] = 1;//初始化最长子序列
MAXLEN = 1;//最长的子序列数
for(int i=1;i<n;i++){< div="" style="word-wrap: break-word;">
   for(int j=MAXLEN;j>=0;j--){
      if(array[i] > MIN[j]){
        L[i] = j+1;
        break;
}
}
 if(L[i] > MAXLEN){
  MAXLEN = L[i];
  MIN[MAXLEN] = array[i]
 }else if(array[j]<array[i]&&array[i]<array[j+1]){ 更新最小值<="" div="" style="word-wrap: break-word;">
   MIN[j+1] = array[i];
}
return MAXLEN;
}
咋看一下,其实时间复杂度还是0(n2),但是对于这个我们增加的一个序列对应的最小值,其实具有
单调递增的关系,所以对于这一部分
   for(int j=MAXLEN;j>=0;j--){
      if(array[i] > MIN[j]){
        L[i] = j+1;
        break;
}
我们其实可以用二分搜索进行查找,那么时间复杂度就变成了0(n*logN);
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:57979次
    • 积分:1565
    • 等级:
    • 排名:千里之外
    • 原创:93篇
    • 转载:43篇
    • 译文:0篇
    • 评论:6条
    最新评论