关闭

hdu4352 XHXJ's LIS(数位DP + LIS + 状态压缩)

406人阅读 评论(0) 收藏 举报
分类:

题目点我点我点我


题目大意:求L到R中有多少个数符合各位数字组成长度为K的LIS。


解题思路:用LIS的nlogn的方法解,如:

现在LIS是2,5,8,9。最新的是3,然后就把状态更新为2,3,8,9。

又因为只有0-9这10个数字,用二进制状态压缩记录状态。

dp[i][j][k]表示i位数,状态为j时的LIS为k的数量。

除了注意数字的上界外,还必须注意数字位数长度与状态的更新,每换新长度时都必须初始化状态,如:

现在有一个5位数,枚举了5位数后,然后就开始枚举4位数,此时就必须将状态s重置为0,即把最高位看作0。

所以我这里用z记录前面是否都为0,若为真,即这是一个新的长度的数,重置状态s。


/* ***********************************************
┆  ┏┓   ┏┓ ┆
┆┏┛┻━━━┛┻┓ ┆
┆┃       ┃ ┆
┆┃   ━   ┃ ┆
┆┃ ┳┛ ┗┳ ┃ ┆
┆┃       ┃ ┆
┆┃   ┻   ┃ ┆
┆┗━┓ 马 ┏━┛ ┆
┆  ┃ 勒 ┃  ┆      
┆  ┃ 戈 ┗━━━┓ ┆
┆  ┃ 壁     ┣┓┆
┆  ┃ 的草泥马  ┏┛┆
┆  ┗┓┓┏━┳┓┏┛ ┆
┆   ┃┫┫ ┃┫┫ ┆
┆   ┗┻┛ ┗┻┛ ┆
************************************************ */

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
using namespace std;

#define rep(i,a,b) for (int i=(a),_ed=(b);i<=_ed;i++)
#define per(i,a,b) for (int i=(b),_ed=(a);i>=_ed;i--)
const int inf_int = 2e9;
const long long inf_ll = 2e18;
#define inf_add 0x3f3f3f3f
#define mod 1000000007
#define LL long long
#define ULL unsigned long long
#define MS0(X) memset((X), 0, sizeof((X)))
#define Sd(X) int (X); scanf("%d", &X)
#define Sdd(X, Y) int X, Y; scanf("%d%d", &X, &Y)
#define Sddd(X, Y, Z) int X, Y, Z; scanf("%d%d%d", &X, &Y, &Z)

LL dp[20][1<<10][11];
int k;
int bit[20];

int update(int x,int s)
{
    for(int i=x;i<10;i++)
    {
        if(s&(1<<i))
            return (s^(1<<i))|(1<<x);
    }
    return s|(1<<x);
}

int getK(int s)
{
    int cnt = 0;
    while(s)
    {
        if(s&1)cnt++;
        s >>= 1;
    }
    return cnt;
}

LL dfs(int pos,int s,bool e,bool z) //e为上界,z记录前面的是否都为0
{
    if(!pos)return getK(s) == k;
    if(!e && dp[pos][s][k]!=-1)
        return dp[pos][s][k];
    int digit = e ? bit[pos] : 9;
    LL ans = 0;
    for(int i=0;i<=digit;i++)
    {
        ans += dfs(pos-1,(z && (i==0)) ? 0 : update(i,s),e && i==digit,z && (i==0));
    }
    if(!e)dp[pos][s][k] = ans;
    return ans;
}

LL solve(LL n)
{
    int len = 0;
    while(n)
    {
        bit[++len] = n%10;
        n /= 10;
    }
    return dfs(len,0,1,1);
}

int main()
{   //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
	Sd(t);
	int cas = 1;
	memset(dp,-1,sizeof dp);
	while(t--)
    {
        LL a,b;
        cin>>a>>b>>k;
        printf("Case #%d: %I64d\n",cas++,solve(b)-solve(a-1));
    }
    return 0;
}



 

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:50045次
    • 积分:2640
    • 等级:
    • 排名:第13762名
    • 原创:221篇
    • 转载:7篇
    • 译文:0篇
    • 评论:9条
    最新评论