# CF#369（Div2） C. Coloring Trees （DP）

C. Coloring Trees
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the park where n trees grow. They decided to be naughty and color the trees in the park. The trees are numbered with integers from 1 to n from left to right.

Initially, tree i has color ci. ZS the Coder and Chris the Baboon recognizes only m different colors, so 0 ≤ ci ≤ m, where ci = 0 means that tree i is uncolored.

ZS the Coder and Chris the Baboon decides to color only the uncolored trees, i.e. the trees with ci = 0. They can color each of them them in any of the m colors from 1 to m. Coloring the i-th tree with color j requires exactly pi, j litres of paint.

The two friends define the beauty of a coloring of the trees as the minimum number of contiguous groups (each group contains some subsegment of trees) you can split all the n trees into so that each group contains trees of the same color. For example, if the colors of the trees from left to right are 2, 1, 1, 1, 3, 2, 2, 3, 1, 3, the beauty of the coloring is 7, since we can partition the trees into 7 contiguous groups of the same color : {2}, {1, 1, 1}, {3}, {2, 2}, {3}, {1}, {3}.

ZS the Coder and Chris the Baboon wants to color all uncolored trees so that the beauty of the coloring is exactly k. They need your help to determine the minimum amount of paint (in litres) needed to finish the job.

Please note that the friends can't color the trees that are already colored.

Input

The first line contains three integers, nm and k (1 ≤ k ≤ n ≤ 1001 ≤ m ≤ 100) — the number of trees, number of colors and beauty of the resulting coloring respectively.

The second line contains n integers c1, c2, ..., cn (0 ≤ ci ≤ m), the initial colors of the trees. ci equals to 0 if the tree number i is uncolored, otherwise the i-th tree has color ci.

Then n lines follow. Each of them contains m integers. The j-th number on the i-th of them line denotes pi, j (1 ≤ pi, j ≤ 109) — the amount of litres the friends need to color i-th tree with color jpi, j's are specified even for the initially colored trees, but such trees still can't be colored.

Output

Print a single integer, the minimum amount of paint needed to color the trees. If there are no valid tree colorings of beauty k, print  - 1.

Examples
input
3 2 2
0 0 0
1 2
3 4
5 6

output
10
input
3 2 2
2 1 2
1 3
2 4
3 5

output
-1
input
3 2 2
2 0 0
1 3
2 4
3 5

output
5
input
3 2 3
2 1 2
1 3
2 4
3 5

output
0
Note

In the first sample case, coloring the trees with colors 2, 1, 1 minimizes the amount of paint used, which equals to 2 + 3 + 5 = 10. Note that 1, 1, 1 would not be valid because the beauty of such coloring equals to 1 ({1, 1, 1} is a way to group the trees into a single group of the same color).

In the second sample case, all the trees are colored, but the beauty of the coloring is 3, so there is no valid coloring, and the answer is - 1.

In the last sample case, all the trees are colored and the beauty of the coloring matches k, so no paint is used and the answer is 0.

/* ***********************************************
┆  ┏┓　　　┏┓ ┆
┆┏┛┻━━━┛┻┓ ┆
┆┃　　　　　　　┃ ┆
┆┃　　　━　　　┃ ┆
┆┃　┳┛　┗┳　┃ ┆
┆┃　　　　　　　┃ ┆
┆┃　　　┻　　　┃ ┆
┆┗━┓　马　┏━┛ ┆
┆　　┃　勒　┃　　┆
┆　　┃　戈　┗━━━┓ ┆
┆　　┃　壁　　　　　┣┓┆
┆　　┃　的草泥马　　┏┛┆
┆　　┗┓┓┏━┳┓┏┛ ┆
┆　　　┃┫┫　┃┫┫ ┆
┆　　　┗┻┛　┗┻┛ ┆
************************************************ */

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <bitset>
using namespace std;

#define rep(i,a,b) for (int i=(a),_ed=(b);i<=_ed;i++)
#define per(i,a,b) for (int i=(b),_ed=(a);i>=_ed;i--)
#define pb push_back
#define mp make_pair
const int inf_int = 2e9;
const long long inf_ll = 2e18;
#define mod 1000000007
#define LL long long
#define ULL unsigned long long
#define MS0(X) memset((X), 0, sizeof((X)))
#define SelfType int
SelfType Gcd(SelfType p,SelfType q){return q==0?p:Gcd(q,p%q);}
SelfType Pow(SelfType p,SelfType q){SelfType ans=1;while(q){if(q&1)ans=ans*p;p=p*p;q>>=1;}return ans;}
#define Sd(X) int (X); scanf("%d", &X)
#define Sdd(X, Y) int X, Y; scanf("%d%d", &X, &Y)
#define Sddd(X, Y, Z) int X, Y, Z; scanf("%d%d%d", &X, &Y, &Z)
#define reunique(v) v.resize(std::unique(v.begin(), v.end()) - v.begin())
#define all(a) a.begin(), a.end()
typedef pair<int, int> pii;
typedef pair<long long, long long> pll;
typedef vector<int> vi;
typedef vector<long long> vll;
inline int read(){int ra,fh;char rx;rx=getchar(),ra=0,fh=1;while((rx<'0'||rx>'9')&&rx!='-')rx=getchar();if(rx=='-')fh=-1,rx=getchar();while(rx>='0'&&rx<='9')ra*=10,ra+=rx-48,rx=getchar();return ra*fh;}

#define inf 0x3f3f3f3f3f3f3f3f

void checkmin(LL &x,LL y)
{
if(x>y)x=y;
}

int c[105];
int p[105][105];
LL dp[105][105][105];  //dp[i][j][k] 表示枚举到第i个点有j个阶段当前颜色为k的费用

int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
ios::sync_with_stdio(0);
cin.tie(0);
int n,m,K;
for(int i=1;i<=n;i++)
{
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
}
}
memset(dp,inf,sizeof dp);
if(c[1])dp[1][1][c[1]] = 0;
else
{
for(int j=1;j<=m;j++)dp[1][1][j] = p[1][j];
}
for(int i=2;i<=n;i++)
{
if(c[i])
{
for(int j=1;j<=K;j++)
{
checkmin(dp[i][j][c[i]],dp[i-1][j][c[i]]);
for(int k=1;k<=m;k++)
{
if(k!=c[i]) checkmin(dp[i][j][c[i]],dp[i-1][j-1][k]);
}
}
}
else
{
for(int j=1;j<=K;j++)
{
for(int k=1;k<=m;k++)
{
checkmin(dp[i][j][k],dp[i-1][j][k]+p[i][k]);
for(int last=1;last<=m;last++)
{
if(last!=k)checkmin(dp[i][j][k],dp[i-1][j-1][last]+p[i][k]);
}
}
}
}
}
LL ans = inf;
for(int i=1;i<=m;i++)
checkmin(ans,dp[n][K][i]);
printf("%I64d\n",ans==inf?-1:ans);
return 0;
}


• 本文已收录于以下专栏：

## CodeForces 369 div2 C Coloring Trees DP

C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input stan...

## [Codeforces Round #369 (Div. 2) C. Coloring Trees] DP

[Codeforces Round #369 (Div. 2) C. Coloring Trees] DP题目链接：[Codeforces Round #369 (Div. 2) C. Colorin...

## codeforces Round #369 (Div. 2) C. Coloring Trees (三维DP)

﻿﻿ C. Coloring Trees time limit per test 2 seconds memory limit per test ...

## Codeforces #369（Div.2） C.Coloring Trees【Dp】

Coloring Trees Description ZS the Coder and Chris the Baboon has arrived at Udayland! ...

## 【Codeforces Round #369 (Div. 2)】Codeforces 711C Coloring Trees

• sdfzyhx
• 2016年08月30日 14:00
• 147

## Codeforces Round #369 (Div. 2) C. Coloring Trees

ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the park where n trees gr...

## codeforces round 369div2 C Coloring Trees

ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the park where n trees gro...

## codeforces Round_369 C. Coloring Trees

C. Coloring Trees

## CF 369 div 2 —D 搜索+组合数

D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes ...

举报原因： 您举报文章：CF#369（Div2） C. Coloring Trees （DP） 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)