CF 369 div 2 —D 搜索+组合数

D. Directed Roads
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from1 to n.

There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.

ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, ..., Ak (k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.

Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.

Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.

Input

The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.

The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n, ai ≠ i)ai denotes a road going from town i to town ai.

Output

Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.

Examples
input
3
2 3 1
output
6
input
4
2 1 1 1
output
8
input
5
2 4 2 5 3
output
28
Note

Consider the first sample case. There are 3 towns and 3 roads. The towns are numbered from 1 to 3 and the roads are , initially. Number the roads 1 to 3 in this order.

The sets of roads that ZS the Coder can flip (to make them not confusing) are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Note that the empty set is invalid because if no roads are flipped, then towns 1, 2, 3 is form a directed cycle, so it is confusing. Similarly, flipping all roads is confusing too. Thus, there are a total of 6 possible sets ZS the Coder can flip.

The sample image shows all possible ways of orienting the roads from the first sample such that the network is not confusing.



题意:给定一个图有那个顶点n条边,每条边都是有向边,你可以任意改变每条边的方向,使得改图没有环,问有多少种修改方式

因为有n个顶点n条边,那么在一个联通图上最多有1个环,我们发现,在一个环上使得不成立有向环的方法数是可以计算的,当一个环有n条边

那么方法数 Cnum= C(n,1)+C(n,2)+ 。。。+C(n,n-1),即第n行杨辉三角的和-2,不在环上的边方向可以任意取,m条边,就有2^m

种方法数,那么这个连通图总方法数 = Cnum * 2^m

ac 代码

#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
typedef long long LL;
const LL mod=1e9+7;
const int maxn=2000050;
struct Edge
{
    int v,next;
}edge[maxn];
int tot,head[maxn];
int cv,allv;
int cnum[maxn],vis[maxn];
LL pow[maxn],ans;
void init()
{
    ans=1;

    pow[0]=1;
    for(int i=1;i<maxn-4;i++)
        pow[i]=(pow[i-1]*2)%mod;

    tot=0;
    memset(vis,0,sizeof(vis));
    memset(head,-1,sizeof(head));
    memset(cnum,0,sizeof(cnum));
}
void add_edge(int u,int v)
{
    edge[tot].v=v;
    edge[tot].next=head[u];
    head[u]=tot++;
}
void dfs(int u,int cnt)
{
    allv++;
    for(int i=head[u];i!=-1;i=edge[i].next)
    {
        int v=edge[i].v;
        if(!vis[v])
        {
            vis[v]=1;
            cnum[v]=cnt+1;
            dfs(v,cnt+1);
        }
        else
        {
            cv=max(cv,cnt+1-cnum[v]);
        }
    }
}
int main()
{
    int n;

    while(scanf("%d",&n)!=-1)
    {
        init();
        for(int u=1;u<=n;u++)
        {
            int v;
            scanf("%d",&v);
            add_edge(u,v);
            add_edge(v,u);
        }
        for(int i=1;i<=n;i++)
        {

            if(!vis[i])
            {
                vis[i]=1;
                cnum[i]=1;
                cv=0;///环上的边数
                allv=0;///连通图所有边数
                dfs(i,1);
              ///  cout<<cv<<" "<<allv<<endl;
                if(cv==0)
                {
                    ans=ans*pow[allv];///可以省,数据不存在没有环的连通图
                    ans=ans%mod;
                }
                else
                {
                    ans = ans*( ((pow[cv]-2)*(pow[allv-cv]))%mod   );
                    ans=ans%mod;
                }
            }
        }
        printf("%lld\n",ans);
    }
    //cout << "Hello world!" << endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值