数据结构—稀疏矩阵三元组基础及应用

原创 2016年05月30日 16:08:44
/*
假设n*n的稀疏矩阵A采用三元组表示,设计一个程序,实现如下功能:
(1)生成程序中两个稀疏矩阵的三元组a和b;
(2)输出a转置矩阵的三元组;
(3)输出a+b的三元组;
(4)输出ab的三元组。
*/
#include <iostream>
#define M 4
#define N 4
#define MaxSize  100         //矩阵中非零元素最多个数
typedef int ElemType;
using namespace std;
typedef struct
{
    int r;                  //行号
    int c;                  //列号
    ElemType d;             //元素值
} TupNode;                  //三元组定义

typedef struct
{
    int rows;               //行数
    int cols;               //列数
    int nums;               //非零元素个数
    TupNode data[MaxSize];
} TSMatrix;                 //三元组顺序表定义

void CreatMat(TSMatrix &t,ElemType A[M][N])  //从一个二维稀疏矩阵创建其三元组表示
{
    int i,j;
    t.rows=M;
    t.cols=N;
    t.nums=0;
    for (i=0; i<M; i++)
    {
        for (j=0; j<N; j++)
            if (A[i][j]!=0)     //只存储非零元素
            {
                t.data[t.nums].r=i;
                t.data[t.nums].c=j;
                t.data[t.nums].d=A[i][j];
                t.nums++;
            }
    }
}

bool Value(TSMatrix &t,ElemType x,int i,int j)  //三元组元素赋值
{
    int k=0,k1;
    if (i>=t.rows || j>=t.cols)
        return false;               //失败时返回false
    while (k<t.nums && i>t.data[k].r) k++;                  //查找行
    while (k<t.nums && i==t.data[k].r && j>t.data[k].c) k++;//查找列
    if (t.data[k].r==i && t.data[k].c==j)   //存在这样的元素
        t.data[k].d=x;
    else                                    //不存在这样的元素时插入一个元素
    {
        for (k1=t.nums-1; k1>=k; k1--)
        {
            t.data[k1+1].r=t.data[k1].r;
            t.data[k1+1].c=t.data[k1].c;
            t.data[k1+1].d=t.data[k1].d;
        }
        t.data[k].r=i;
        t.data[k].c=j;
        t.data[k].d=x;
        t.nums++;
    }
    return true;                        //成功时返回true
}

bool Assign(TSMatrix t,ElemType &x,int i,int j)  //将指定位置的元素值赋给变量
{
    int k=0;
    if (i>=t.rows || j>=t.cols)
        return false;           //失败时返回false
    while (k<t.nums && i>t.data[k].r) k++;                  //查找行
    while (k<t.nums && i==t.data[k].r && j>t.data[k].c) k++;//查找列
    if (t.data[k].r==i && t.data[k].c==j)
        x=t.data[k].d;
    else
        x=0;                //在三元组中没有找到表示是零元素
    return true;            //成功时返回true
}

void DispMat(TSMatrix t)        //输出三元组
{
    int i;
    if (t.nums<=0)          //没有非零元素时返回
        return;
    cout<<"\t"<<t.rows<<"\t"<<t.cols<<"\t"<<t.nums<<"\n";
    cout<<"\t------------------\n";
    for (i=0; i<t.nums; i++)
        cout<<"\t"<<t.data[i].r<<"\t"<<t.data[i].c<<"\t"<<t.data[i].d<<"\n";
}

void TranTat(TSMatrix t,TSMatrix &tb)       //矩阵转置
{
    int p,q=0,v;                    //q为tb.data的下标
    tb.rows=t.cols;
    tb.cols=t.rows;
    tb.nums=t.nums;
    if (t.nums!=0)                  //当存在非零元素时执行转置
    {
        for (v=0; v<t.cols; v++)        //tb.data[q]中的记录以c域的次序排列
            for (p=0; p<t.nums; p++)    //p为t.data的下标
                if (t.data[p].c==v)
                {
                    tb.data[q].r=t.data[p].c;
                    tb.data[q].c=t.data[p].r;
                    tb.data[q].d=t.data[p].d;
                    q++;
                }
    }
}

bool MatAdd(TSMatrix a,TSMatrix b,TSMatrix &c)   //两矩阵相加
{
    int i,j;
    ElemType va,vb,vc;
    if (a.rows!=b.rows || a.cols!=b.cols)
        return false;                        //行数或列数不等时不能进行相加运算
    c.rows=a.rows;
    c.cols=a.cols;       //c的行列数与a的相同
    c.nums=0;
    for(i=0; i<M; i++)
        for(j=0; j<N; j++)
        {
            Assign(a,va,i,j);
            Assign(b,vb,i,j);
            vc=va+vb;
            if(vc)
                Value(c,vc,i,j);
        }
    return true;
}

bool MatMlt(TSMatrix a,TSMatrix b,TSMatrix &c)   //两矩阵相乘
{
    int i,j,k,s;
    ElemType va,vb,vc;
    if (a.cols!=b.rows)
        return false;
    c.rows=a.rows;
    c.cols=b.cols;
    c.nums=0;
    for(i=0; i<M; i++)  //第一个矩阵的行数
    {
        for(j=0; j<N; j++)  //第二个矩阵的列数
        {
            s=0;
            for(k=0; k<N; k++)   //第一个矩阵的列数和第二个矩阵的行数
            {
                Assign(a,va,i,k);
                Assign(b,vb,k,j);
                s=s+va*vb;
            }
            if(s)
                Value(c,s,i,j);
        }
    }
    return true;
}

int main()
{
    TSMatrix t1,t2,t3,t4,t5;
    ElemType A[4][4]=
    {
        {1,0,3,0},
        {0,1,0,0},
        {0,0,1,0},
        {0,0,1,1},
    };
    ElemType B[4][4]=
    {
        {3,0,0,0},
        {0,4,0,0},
        {0,0,1,0},
        {0,0,0,2},
    };
    CreatMat(t1,A);
    cout<<"a的三元组:\n";
    DispMat(t1);
    CreatMat(t2,B);
    cout<<"b的三元组:\n";
    DispMat(t2);
    cout<<"a的转置为c"<<endl;
    cout<<"c的三元组:\n";
    TranTat(t1,t3);
    DispMat(t3);
    cout<<"c=a+b"<<endl;
    cout<<"c的三元组:\n";
    MatAdd(t1,t2,t4);
    DispMat(t4);
    cout<<"c=a*b"<<endl;
    cout<<"c的三元组:\n";
    MatMlt(t1,t2,t5);
    DispMat(t5);
    return 0;
}

运行结果:


版权声明:本文为博主原创文章,未经博主允许不得转载。

稀疏矩阵的三元组处理

*// main.cpp // 稀疏矩阵压缩的一种方法——三元组法 // /** @brief 利用三元组来储存稀疏数组中的非0值,从而达到减少内存占用的目的 * @co...
  • lin_angel
  • lin_angel
  • 2016年02月15日 21:52
  • 263

用三元组存储稀疏矩阵并实现转置

基本概念 在学习线性代数的时候,经常用到矩阵。在C语言中,表示矩阵的最直观形式就是二维数组。然而在实际应用中,很多高阶矩阵中的非零元素非常少,这个时候如果继续使用二维数组存储,那么就会浪费很多存储空...
  • tiredoy
  • tiredoy
  • 2014年04月24日 20:58
  • 8926

数据结构之自建算法库——稀疏矩阵的三元组表示

本文针对数据结构基础系列网络课程(5):数组与广义表中第3课时稀疏矩阵的三元组表示。问题:定义稀疏矩阵的三元组表示的数据结构,实现其基本操作,并设计测试函数进行测试代码:#include #defi...
  • sxhelijian
  • sxhelijian
  • 2015年10月07日 16:36
  • 5521

《数据结构》---三元组的实现

在此给出三元组的C语言实现方法,.h文件与.c文件没有分开,写在了一个文件中,可以粘贴放在clockblocks中运行,或者Liunx平台。#include #include #define OK...
  • u013383042
  • u013383042
  • 2016年09月06日 20:32
  • 746

学习笔记------数据结构(C语言版)数组之三元组顺序表

//TSMatrix.cpp #include"predefined.h" #include"TSMatrix.h" Status TransposeSMatrix(TSMatrix M,TSMa...
  • CYTCHAN
  • CYTCHAN
  • 2016年02月18日 18:51
  • 1270

第九周 项目3 稀疏矩阵的三元组表示的实现及应用(矩阵相加)

/* * 烟台大学计算机与控制工程学院 *文件名称:sqstack.cpp *作 者:王旭 *完成日期:201...
  • Wang_Xu_
  • Wang_Xu_
  • 2015年10月30日 09:02
  • 1306

矩阵相加的算法(存储结构为三元组表)

假设稀疏矩阵A和B均以三元组表作为存储结构。 试写出矩阵相加的算法,另设三元组表C存放结果矩阵。...
  • u013228403
  • u013228403
  • 2014年06月22日 18:10
  • 4023

数据结构之自建算法库——稀疏矩阵的三元组表示

本文针对数据结构基础系列网络课程(5):数组与广义表中第3课时稀疏矩阵的三元组表示。问题:定义稀疏矩阵的三元组表示的数据结构,实现其基本操作,并设计测试函数进行测试代码:#include #defi...
  • sxhelijian
  • sxhelijian
  • 2015年10月07日 16:36
  • 5521

用三元组存储稀疏矩阵并实现转置

基本概念 在学习线性代数的时候,经常用到矩阵。在C语言中,表示矩阵的最直观形式就是二维数组。然而在实际应用中,很多高阶矩阵中的非零元素非常少,这个时候如果继续使用二维数组存储,那么就会浪费很多存储空...
  • tiredoy
  • tiredoy
  • 2014年04月24日 20:58
  • 8926

数据结构上机实践第八周项目8-稀疏矩阵的三元组表示的实现及应用

稀疏矩阵的三元组表示的实现及应用 在现代社会中,在一个大量的人群集体中,总会有和某个人有相互之间的关系或者单向关系的,那我们的矩阵也是如此,稀疏矩阵压缩存储的方式,便可以让这种关系一目了然,巧妙应用...
  • hou8389846
  • hou8389846
  • 2017年10月26日 10:50
  • 106
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:数据结构—稀疏矩阵三元组基础及应用
举报原因:
原因补充:

(最多只允许输入30个字)