关闭

快速幂取余深度讲解

标签: 算法 快速幂取余 精讲
213人阅读 评论(0) 收藏 举报
分类:

在网上看了个快速幂取余,感觉讲的很好,一步步来,条例清晰,就转载一下,在这里鸣谢一下作者。

下面是一个快速幂的介绍:

先贴一个秦九韶算法(Horner算法)的原理:

设有n+1项的n次函数

f(x)=a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+......+a_2x^2+a_1x+a_0


将前n项提取公因子x,得

f(x)=(a_nx^{n-1}+a_{n-1}x^{n-2}+a_{n-2}x^{n-3}+......+a_2x+a_1)x+a_0


再将括号内的前n-1项提取公因子x,得

f(x)=((a_nx^{n-2}+a_{n-1}x^{n-3}+a_{n-2}x^{n-4}+......+a_2)x+a_1)x+a_0


如此反复提取公因子x,最后将函数化为

f(x)=(((a_nx+a_{n-1})x+a_{n-2})x+......+a_1)x+a_0


f_1=a_nx+a_{n-1}

f_2=f_1x+a_{n-2}

f_3=f_2x+a_{n-3}

......

f_n=f_{n-1}x+a_0


f_n即为所求

下面是讲解快速幂的:(By  夜せ︱深   感谢作者)

快速幂取模算法

在网站上一直没有找到有关于快速幂算法的一个详细的描述和解释,这里,我给出快速幂算法的完整解释,用的是C语言,不同语言的读者只好换个位啦,毕竟读C的人较多~

所谓的快速幂,实际上是快速幂取模的缩写,简单的说,就是快速的求一个幂式的模()。在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快、计算范围更大的算法,产生了快速幂取模算法。[有读者反映在讲快速幂部分时有点含糊,所以在这里对本文进行了修改,作了更详细的补充,争取让更多的读者一目了然]

我们先从简单的例子入手:求a^b % c = ?

算法1.首先直接地来设计这个算法:

int ans = 1;

for(int i = 1;i<=b;i++)

{

ans = ans * a;

}

ans = ans % c;

这个算法的时间复杂度体现在for循环中,为Ob.这个算法存在着明显的问题,如果ab过大,很容易就会溢出。

那么,我们先来看看第一个改进方案:在讲这个方案之前,要先有这样一个公式:a^b%c=(a%c)^b%c.这个公式大家在离散数学或者数论当中应该学过,不过这里为了方便大家的阅读,还是给出证明:

引理1:a^b%c = (a%c)^b%c

 

上面公式为下面公式的引理,即积的取余等于取余的积的取余。

 

证明了以上的公式以后,我们可以先让a关于c取余,这样可以大大减少a的大小,

于是不用思考的进行了改进:

算法2

int ans = 1;

a = a % c; //加上这一句

for(int i = 1;i<=b;i++)

{

ans = ans * a;

}

ans = ans % c;

聪明的读者应该可以想到,既然某个因子取余之后相乘再取余保持余数不变,那么新算得的ans也可以进行取余,所以得到比较良好的改进版本。

算法3

int ans = 1;

a = a % c; //加上这一句

for(int i = 1;i<=b;i++)

{

ans = (ans * a) % c;//这里再取了一次余

 

}

ans = ans % c;

这个算法在时间复杂度上没有改进,仍为O(b),不过已经好很多的,但是在c过大的条件下,还是很有可能超时,所以,我们推出以下的快速幂算法。

快速幂算法依赖于以下明显的公式,我就不证明了。

 

那么我们可以得到以下算法:

算法4

int ans = 1;

a = a % c;

if(b%2==1)

ans = (ans * a) mod c; //如果是奇数,要多求一步,可以提前算到ans

k = (a*a) % c; //我们取a2而不是a

for(int i = 1;i<=b/2;i++)

{

ans = (ans * k) % c;

}

ans = ans % c;

 

我们可以看到,我们把时间复杂度变成了O(b/2).当然,这样子治标不治本。但我们可以看到,当我们令k = (a * a) mod c时,状态已经发生了变化,我们所要求的最终结果即为(k)b/2 mod c而不是原来的ab mod c所以我们发现这个过程是可以迭代下去的。当然,对于奇数的情形会多出一项a mod c,所以为了完成迭代,当b是奇数时,我们通过

ans = (ans * a) % c;来弥补多出来的这一项,此时剩余的部分就可以进行迭代了。

 

形如上式的迭代下去后,当b=0时,所有的因子都已经相乘,算法结束。于是便可以在Olog b的时间内完成了。于是,有了最终的算法:快速幂算法。

算法5:快速幂算法

 

int ans = 1;

a = a % c;

while(b>0)

{

 

if(b % 2 == 1)

ans = (ans * a) % c;

b = b/2;

a = (a * a) % c;

}

将上述的代码结构化,也就是写成函数:

int PowerMod(int a, int b, int c)

{

int ans = 1;

a = a % c;

while(b>0)

{

 

if(b % 2 = = 1)

ans = (ans * a) % c;

b = b/2;

a = (a * a) % c;

}

return ans;

}

本算法的时间复杂度为Ologb),能在几乎所有的程序设计(竞赛)过程中通过,是目前最常用的算法之一。

以下内容仅供参考:

扩展:有关于快速幂的算法的推导,还可以从另一个角度来想。

=? 求解这个问题,我们也可以从进制转换来考虑:

10进制的b转化成2进制的表达式:

注意此处的要么为0,要么为1,如果某一项,那么这一项就是1,这个对应了上面算法过程中b是偶数的情况,为1对应了b是奇数的情况[不要搞反了,读者自己好好分析,可以联系10进制转2进制的方法],我们从依次乘到。对于每一项的计算,计算后一项的结果时用前一项的结果的平方取余。对于要求的结果而言,为时ans不用把它乘起来,[因为这一项值为1],为1项时要乘以此项再取余。这个算法和上面的算法在本质上是一样的,读者可以自行分析,这里我说不多说了,希望本文有助于读者掌握快速幂算法的知识点,当然,要真正的掌握,不多练习是不行的。


0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

初学快速幂详细讲解

不扯那么多,我就直接讲解快速幂是怎么样求解计算的; 首先你要知道快速幂是把指数b转换为二进制进行权值进位来计算a的b次方的;例如2的11次方;11的二进制位1011,就是8+0+2+1;a的8次方乘a...
  • qq_32863631
  • qq_32863631
  • 2017-04-21 20:41
  • 216

快速幂+快速幂经典例题

快速幂取模算法所谓的快速幂,实际上是快速幂取模的缩写,简单的说,就是快速的求一个幂式的模(余)。在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快、计算范围更大的算法,产生了快速幂取模...
  • zhhe0101
  • zhhe0101
  • 2016-10-15 10:59
  • 1197

算法学习 - 快速幂和矩阵快速幂(复杂度Olog(n))C++实现

快速幂 快速幂顾名思义,就是快速算某个数的多少次幂。其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高。 快速幂实现原理 快速幂的原理比较好懂,就是说假如我们...
  • chenfs1992
  • chenfs1992
  • 2014-12-24 22:51
  • 7746

【每日算法】快速幂

数值的整数次方实现函数double Power(double base, int n) 求base的n次方,不得使用库函数,同时不需要考虑大数问题。Tips问题本身很直观,但是越简单的题越需要细心思...
  • jiange_zh
  • jiange_zh
  • 2016-02-18 11:50
  • 3225

快速幂或者矩阵快速幂

快速幂或者矩阵快速幂在算指数时是很高效的,他的基本原理是二进制,下面的A可以是一个数也可以是一个矩阵(本文特指方阵),若是数就是快速幂算法,若是矩阵就是矩阵快速幂算法,用c++只需把矩阵设成一个类就可...
  • u011401504
  • u011401504
  • 2013-08-04 22:17
  • 10105

POJ 1001 高精度实数相乘与快速幂

题目链接:http://poj.org/problem?id=1001 题意:
  • r131303
  • r131303
  • 2014-05-09 20:56
  • 858

矩阵快速幂总结

矩阵快速幂 基础知识:(会基础的直接看应用部分) (1) 矩阵乘法 简单的说矩阵就是二维数组,数存在里面,矩阵乘法的规则:A*B=C 其中c[i][j]为A的第i行与B的第j列对应乘积的和,即: ...
  • wust_zzwh
  • wust_zzwh
  • 2016-11-25 15:40
  • 8129

POJ3070矩阵快速幂求Fib

欲哭无泪。。。。。比赛的时候都敲不出来。。 Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Tota...
  • u012350533
  • u012350533
  • 2013-10-08 23:50
  • 931

快速幂取模算法详解

1.大数模幂运算的缺陷: 快速幂取模算法的引入是从大数的小数取模的朴素算法的局限性所提出的,在朴素的方法中我们计算一个数比如5^1003%31是非常消耗我们的计算资源的,在整个计算过程中最麻烦的就是我...
  • ltyqljhwcm
  • ltyqljhwcm
  • 2016-11-05 10:40
  • 13713

二分幂、快速幂、矩阵快速幂、幂取模

二分幂:如计算a^n;如果n为偶数,则计算a^n/2(递归到n=0),再计算(a^n/2)(a^n/2),就可得出结果;如果n为奇数,则先计算a^(n-1)/2(递归到n=0),再计算(a^(n-1)...
  • u013889450
  • u013889450
  • 2015-11-09 13:42
  • 625
    个人资料
    • 访问:45002次
    • 积分:2956
    • 等级:
    • 排名:第13874名
    • 原创:246篇
    • 转载:15篇
    • 译文:0篇
    • 评论:4条
    最新评论