- 博客(6)
- 资源 (6)
- 收藏
- 关注
原创 阅读小结:Unsupervised Representation with Deep Convolutional Generative Adversarial Networks
WhatCNN应用于无监督学习。将这种CNN称为DCGANs1.提出和评估了DCGANs 有一些结构上的限制,让他可以stable的去训练。2.利用图像分类任务训练的discriminator,证明了他们有无监督学习的潜力。(这是迁移学习?)证明了他们的adversarial pair学习到了一个 hierarchy of representations 从物体的部分到整个场景
2016-08-27 22:38:32
2892
原创 阅读小结:Generative Adversarial Nets
这是Ian Goodfellow大神的2014年的paper,最近很火,一直没看,留的坑。中文应该叫做对抗网络What:同时驯良两个模型:一个生成模型G(获得数据分布),一个区分模型D(预测输入是真实的,还是G中产生的)G的训练目标就是最大化D犯错误的可能,这样G这个生成模型就越厉害。这个框架很像两个人在玩游戏。整个系统里只用了bp,没有马尔可夫链或者其他推理的神经
2016-08-26 15:03:44
7417
原创 阅读小结: Artist style transfer for videos
这篇paper存了好久,一直没有看。今天补了What:看了这个youtube视频就可以感受到了。视频上做Artist Style十分酷炫!https://www.youtube.com/watch?v=Khuj4ASldmU看前的问题:我自己写过单帧的Artist Style (https://github.com/layumi/2016_Artist_St
2016-08-25 11:37:51
2176
原创 阅读小结:Correlational Neural Networks
What:auto encoder的升级版 显式的 最大化当投影到同一空间时views之间的联系 (这里的view指的是图像,声音这种不同的输入源)比如视频分类任务中就想把声音结合进去。Formally Define这个任务是:我们有一组数据Z,每个Z是由特征X,和特征Y concat起来的 (比如X来自视频的图像,Y来自视频的音频)1.首先 h1(X) 和 h
2016-08-18 14:45:55
1112
原创 阅读小结:CNN Image Retrieval Learns from BoW:Unsupervised Fine-Tuning with Hard Example:CNN Image Retrie
What:图像检索的一篇文章,由于数据集的问题,ft以后在Holiday上 VGGNET 82.5 在Oxford 5k上结果(cropi) VGGNET 79.1How: 提出了了一个无监督收集的数据集主要讲了收集的策略。
2016-08-12 21:19:01
2977
原创 matlab中在图像上划线 画圈的方法
其实用plot都可以搞定。plot(imp(:,1),imp(:,2),'ro'); %最后的‘ro’,r是代表红色,o是代表画圈。画圈的话可以提供多个点的坐标,我这里用的就是向量的形式。plot(imp(1:2,1),imp(1:2,2)); %划线 提供两个xy坐标,然后plot默认就会划线plot(imp(3:5,1),imp(3:5,2));plot(imp(6
2016-08-03 12:53:54
44699
1
ACM-MM-Talk 无人机演讲.pdf
2020-12-30
ZhedongZheng_图文双向检索_图文互搜.pdf
2020-12-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人