关闭

阅读小结:Unsupervised Representation with Deep Convolutional Generative Adversarial Networks

What CNN应用于无监督学习。将这种CNN称为DCGANs 1.提出和评估了DCGANs 有一些结构上的限制,让他可以stable的去训练。 2.利用图像分类任务训练的discriminator,证明了他们有无监督学习的潜力。(这是迁移学习?) 证明了他们的adversarial pair学习到了一个  hierarchy of representations  从物体的部分到整个场景...
阅读(815) 评论(2)

阅读小结:Generative Adversarial Nets

这是Ian Goodfellow大神的2014年的paper,最近很火,一直没看,留的坑。 中文应该叫做对抗网络 What: 同时驯良两个模型:一个生成模型G(获得数据分布),一个区分模型D(预测输入是真实的,还是G中产生的) G的训练目标就是最大化D犯错误的可能,这样G这个生成模型就越厉害。 这个框架很像两个人在玩游戏。 整个系统里只用了bp,没有马尔可夫链或者其他推理的神经...
阅读(5345) 评论(0)

阅读小结: Artist style transfer for videos

这篇paper存了好久,一直没有看。今天补了 What: 看了这个youtube视频就可以感受到了。视频上做Artist Style十分酷炫! https://www.youtube.com/watch?v=Khuj4ASldmU 看前的问题: 我自己写过单帧的Artist Style (https://github.com/layumi/2016_Artist_St...
阅读(907) 评论(0)

阅读小结:Correlational Neural Networks

What: auto encoder的升级版   显式的 最大化当投影到同一空间时views之间的联系 (这里的view指的是图像,声音这种不同的输入源) 比如视频分类任务中就想把声音结合进去。 Formally Define这个任务是: 我们有一组数据Z,每个Z是由特征X,和特征Y concat起来的  (比如X来自视频的图像,Y来自视频的音频) 1.首先 h1(X) 和 h...
阅读(272) 评论(0)

阅读小结:CNN Image Retrieval Learns from BoW:Unsupervised Fine-Tuning with Hard Example:CNN Image Retrie

What: 图像检索的一篇文章, 由于数据集的问题,ft以后在Holiday上 VGGNET    82.5   在Oxford 5k上结果(cropi) VGGNET 79.1 How:  提出了了一个无监督收集的数据集 主要讲了收集的策略。...
阅读(1060) 评论(0)

matlab中在图像上划线 画圈的方法

其实用plot都可以搞定。  plot(imp(:,1),imp(:,2),'ro'); %最后的‘ro’,r是代表红色,o是代表画圈。画圈的话可以提供多个点的坐标,我这里用的就是向量的形式。   plot(imp(1:2,1),imp(1:2,2)); %划线 提供两个xy坐标,然后plot默认就会划线  plot(imp(3:5,1),imp(3:5,2));  plot(imp(6...
阅读(5725) 评论(0)
    个人资料
    • 访问:59192次
    • 积分:993
    • 等级:
    • 排名:千里之外
    • 原创:32篇
    • 转载:0篇
    • 译文:3篇
    • 评论:40条
    文章分类
    关于我