bzoj 1042(dp+容斥原理)

原创 2016年08月30日 21:31:42

1042: [HAOI2008]硬币购物

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2040  Solved: 1195
[Submit][Status][Discuss]

Description

  硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买s
i的价值的东西。请问每次有多少种付款方法。

Input

  第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s,其中di,s<=100000,tot<=1000

Output

  每次的方法数

Sample Input

1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900

Sample Output

4

27


解题思路:容斥大法好啊。

首先可以DP出没有限制个数的方案数,然后根据容斥原理,

求出有限制的方案数。

设F[i]为不考虑每种硬币的数量限制的情况下,得到面值i的方案数。则状态转移方程为

F[i]=Sum{F[i-C[k]] | i-C[k]>=0 且 k=1..4}

为避免方案重复,要以k为阶段递推,边界条件为F[0]=1,这样预处理的时间复杂度就是O(S)。

接下来对于每次询问,奇妙的解法如下:根据容斥原理,答案为 得到面值S的超过限制的方案数 – 第1种硬币超过限制的方案数 – 第2种硬币超过限制的方案数 – 第3种硬币超过限制的方案数 – 第4种硬币超过限制的方案数 + 第1,2种硬币同时超过限制的方案数 + 第1,3种硬币同时超过限制的方案数 + …… + 第1,2,3,4种硬币全部同时超过限制的方案数。

当第1种硬币超过限制时,只要要用到D[1]+1枚硬币,剩余的硬币可以任意分配,所以方案数为 F[ S – (D[1]+1)C[1] ],当且仅当(S – (D[1]+1)C[1])>=0,否则方案数为0。其余情况类似,每次询问只用问16次,所以询问的时间复杂度为O(1)。


#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
int c[5],tot,s; 
long long f[5][110000],ans;
int d[5];


inline int read()
{
char y; int x=0,f=1; y=getchar();
while (y<'0' || y>'9') {if (y=='-') f=-1; y=getchar();}
while (y>='0' && y<='9') {x=x*10+int(y)-48; y=getchar();}
return x*f;
}


void dfs(int now,int ge,int sum)
 {
  if (sum>s) return;
  if (now==5)
  {
   if (ge==0) return;
   if (ge%2==1) ans-=f[4][s-sum];else ans+=f[4][s-sum];
 return; 
}
dfs(now+1,ge,sum);
dfs(now+1,ge+1,sum+(d[now]+1)*c[now]);
 }


int main()
{
for (int i=1;i<=4;++i) c[i]=read();  tot=read();
f[1][0]=1;
for (int i=c[1];i<=100000;i+=c[1])
{
f[1][i]=1;
}
for (int i=2;i<=4;++i)
for (int j=0;j<=100000;++j)
 {
  f[i][j]=f[i-1][j];
  if (j>=c[i]) f[i][j]+=f[i][j-c[i]];
 }
for (int i=1;i<=tot;++i)
{
  for (int j=1;j<=4;++j) d[j]=read();
  s=read(); ans=f[4][s];
  dfs(1,0,0);
  printf("%lld\n",ans);
     }   
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

【bzoj】1042: [HAOI2008]硬币购物

1042: [HAOI2008]硬币购物Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2371 Solved: 1416 [Submit][S...
  • usher_ou
  • usher_ou
  • 2017年03月23日 17:33
  • 205

BZOJ1042: [HAOI2008]硬币购物 dp+容斥原理

Description   硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买s i的价值的东西。请问每次有多少种付款方法。 ...
  • BeyondW__
  • BeyondW__
  • 2016年08月24日 08:43
  • 136

【BZOJ 1042】【HAOI 2008】硬币购物【DP+容斥】

Description  硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买si的价值的东西。请问每次有多少种付款方法。Input第一行...
  • nixinyis
  • nixinyis
  • 2017年03月01日 16:46
  • 264

bzoj 1042: [HAOI2008]硬币购物(容斥原理)

1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 1803  Solved: 1051 [Submit]...
  • clover_hxy
  • clover_hxy
  • 2016年05月05日 19:11
  • 275

[BZOJ 1042][HAOI2008]硬币购物

容斥原理,背包
  • Horizon_SMZ
  • Horizon_SMZ
  • 2016年03月14日 21:25
  • 266

BZOJ 1042(简单DP+容斥原理)

1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 1301  Solved: 762 [Submit][...
  • u012969412
  • u012969412
  • 2015年04月19日 11:03
  • 149

[BZOJ4710][Jsoi2011]分特产(容斥原理+组合数学)

题目描述传送门题解这道题的限制其实挺不明显的,应该是“每个人都至少有一个” 也就是说对于所有的物品,将其划分成n部分,每部分不能为空,问总的方案数 可以如果利用插板法的话,把n个相同的小球放到m个...
  • Clove_unique
  • Clove_unique
  • 2017年03月22日 14:18
  • 817

【bzoj 1042】 [HAOI2008] 硬币购物(dp+容斥原理)

当烟花飘零、时光远去,看烟雨翩飞流水无期
  • reverie_mjp
  • reverie_mjp
  • 2016年05月20日 22:02
  • 279

BZOJ 1042 [DP][容斥原理]

Description   硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4c_1,c_2,c_3,c_4。某人去商店买东西,去了tottot次。每次带did_i枚cic_i硬币,买sis_...
  • Vectorxj
  • Vectorxj
  • 2016年12月20日 18:24
  • 203

bzoj 1042(容斥原理+背包dp)

传送门 题解: 先预处理出完全背包(无限制)的方案数。 ans=(f(s)-d1超限-d2…+d1d2+d2d3+…-d1d2d3….+d1d2d3d4) P.S.d1超限即使用了d1...
  • KGV093
  • KGV093
  • 2017年10月19日 19:29
  • 49
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:bzoj 1042(dp+容斥原理)
举报原因:
原因补充:

(最多只允许输入30个字)