bzoj 1042(dp+容斥原理)

1042: [HAOI2008]硬币购物

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2040  Solved: 1195
[Submit][Status][Discuss]

Description

  硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买s
i的价值的东西。请问每次有多少种付款方法。

Input

  第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s,其中di,s<=100000,tot<=1000

Output

  每次的方法数

Sample Input

1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900

Sample Output

4

27


解题思路:容斥大法好啊。

首先可以DP出没有限制个数的方案数,然后根据容斥原理,

求出有限制的方案数。

设F[i]为不考虑每种硬币的数量限制的情况下,得到面值i的方案数。则状态转移方程为

F[i]=Sum{F[i-C[k]] | i-C[k]>=0 且 k=1..4}

为避免方案重复,要以k为阶段递推,边界条件为F[0]=1,这样预处理的时间复杂度就是O(S)。

接下来对于每次询问,奇妙的解法如下:根据容斥原理,答案为 得到面值S的超过限制的方案数 – 第1种硬币超过限制的方案数 – 第2种硬币超过限制的方案数 – 第3种硬币超过限制的方案数 – 第4种硬币超过限制的方案数 + 第1,2种硬币同时超过限制的方案数 + 第1,3种硬币同时超过限制的方案数 + …… + 第1,2,3,4种硬币全部同时超过限制的方案数。

当第1种硬币超过限制时,只要要用到D[1]+1枚硬币,剩余的硬币可以任意分配,所以方案数为 F[ S – (D[1]+1)C[1] ],当且仅当(S – (D[1]+1)C[1])>=0,否则方案数为0。其余情况类似,每次询问只用问16次,所以询问的时间复杂度为O(1)。


#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
int c[5],tot,s; 
long long f[5][110000],ans;
int d[5];


inline int read()
{
char y; int x=0,f=1; y=getchar();
while (y<'0' || y>'9') {if (y=='-') f=-1; y=getchar();}
while (y>='0' && y<='9') {x=x*10+int(y)-48; y=getchar();}
return x*f;
}


void dfs(int now,int ge,int sum)
 {
  if (sum>s) return;
  if (now==5)
  {
   if (ge==0) return;
   if (ge%2==1) ans-=f[4][s-sum];else ans+=f[4][s-sum];
 return; 
}
dfs(now+1,ge,sum);
dfs(now+1,ge+1,sum+(d[now]+1)*c[now]);
 }


int main()
{
for (int i=1;i<=4;++i) c[i]=read();  tot=read();
f[1][0]=1;
for (int i=c[1];i<=100000;i+=c[1])
{
f[1][i]=1;
}
for (int i=2;i<=4;++i)
for (int j=0;j<=100000;++j)
 {
  f[i][j]=f[i-1][j];
  if (j>=c[i]) f[i][j]+=f[i][j-c[i]];
 }
for (int i=1;i<=tot;++i)
{
  for (int j=1;j<=4;++j) d[j]=read();
  s=read(); ans=f[4][s];
  dfs(1,0,0);
  printf("%lld\n",ans);
     }   
}

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/M_AXSSI/article/details/52373169
上一篇bzoj 2393(容斥原理)
下一篇bzoj 3503(解异或方程组)
想对作者说点什么? 我来说一句

免费的vpn小白兔软件

2011年06月08日 978KB 下载

没有更多推荐了,返回首页

关闭
关闭