关闭

codeforces Round#369 div2-D tDirected Roads

标签: codeforces图论
89人阅读 评论(0) 收藏 举报
分类:

题意:n个点n条有向边(无自环),求边的集合的方案数,使得翻转这些边的方向后无环。

题解:题目给出的图不会环套环(环套环的话,至少有一个点要有两个出度,但题目是每个点一个出度),所有直接求强连通分量,贡献分两种情况:

1.形成环的强连通:2^n-2(本身和所有边反向不合法,其余都合法);

2.单点的强连通:2(该点的出边对合法性无影响);

累乘即可。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <queue>

using namespace std;

typedef long long LL;
const int M=1000000007;
const int N=400000+10;

vector<int>V[N];
int n;
int Time,dfn[N],low[N],sta[N],instack[N],g[N];
int belong[N],h,Col;
LL RP(LL a,LL b)
{
    LL Ans=1;
    for (;b;b>>=1){
        if (b&1)Ans=Ans*a%M;
        a=a*a%M;
    }
    return Ans;
}
void tarjan(int u)
{
    Time++;
    dfn[u]=low[u]=Time;
    sta[++h]=u;instack[u]=1;
    for (int i=0;i<V[u].size();i++){
        int v=V[u][i];
        if (!dfn[v]){
            tarjan(v);
            low[u]=min(low[u],low[v]);
        }else if (instack[v]==1)low[u]=min(low[u],low[v]);
    }
    if (dfn[u]==low[u]){
        Col++;
        while (sta[h]!=u){instack[sta[h]]=-1;belong[sta[h]]=Col;h--;g[Col]++;}
        instack[sta[h]]=-1;belong[sta[h]]=Col;h--;g[Col]++;
    }
}
int main()
{
    //freopen("1.txt","r",stdin);
    scanf("%d",&n);
    for (int i=1;i<=n;i++){
        int a;scanf("%d",&a);
        V[i].push_back(a);
    }
    memset(g,0,sizeof g);
    memset(dfn,0,sizeof dfn);
    memset(low,0,sizeof low);
    memset(instack,0,sizeof instack);
    h=Time=Col=0;
    for (int i=1;i<=n;i++)if (!dfn[i])tarjan(i);
    LL Ans=1;
    for (int i=1;i<=Col;i++)if (g[i]>1){
        Ans=Ans*(RP(2,g[i])-2+M)%M;
    }else Ans=Ans*2%M;
    cout<<Ans<<endl;
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:6837次
    • 积分:587
    • 等级:
    • 排名:千里之外
    • 原创:53篇
    • 转载:0篇
    • 译文:2篇
    • 评论:0条