2021-10-21 Laplace分布和指数分布,相同参数的两个指数分布之差是Laplace分布

先给出一些公式:

Laplace分布 L a p ( b ) Lap(b) Lap(b)的probability density function:
f ( x ; μ , b ) = 1 2 b exp ⁡ ( − ∣ x − μ ∣ b ) = 1 2 b { exp ⁡ ( − μ − x b ) ,   x < μ exp ⁡ ( x − μ b ) ,   x ≥ μ f(x;\mu, b) = \frac{1}{2b}\exp(-\frac{|x - \mu|}{b}) = \frac{1}{2b}\left\{ \begin{aligned} &\exp(-\frac{\mu-x}{b}), &\ x<\mu \\ &\exp(\frac{x-\mu}{b}), &\ x\geq\mu \end{aligned}\right. f(x;μ,b)=2b1exp(bxμ)=2b1exp(bμx),exp(bxμ), x<μ xμ
cumulative distribution function:
F ( x ) = { 1 2 exp ⁡ ( x − μ b ) ,   x < μ 1 − 1 2 exp ⁡ ( μ − x b ) ,   x ≥ μ F(x) = \left\{ \begin{aligned} &\frac{1}{2}\exp(\frac{x-\mu}{b}), &\ x<\mu \\ &1 - \frac{1}{2}\exp(\frac{\mu - x}{b}), &\ x\geq\mu \end{aligned}\right. F(x)=21exp(bxμ),121exp(bμx), x<μ xμ
指数分布 E x p o ( λ ) Expo(\lambda) Expo(λ)的probability density function:
f ( x ; λ ) = { λ e − λ x ,   x ≥ 0 0 ,   x < 0 f(x;\lambda) = \left\{ \begin{aligned} &\lambda e^{-\lambda x}, &\ x\geq 0 \\ &0, &\ x<0 \end{aligned}\right. f(x;λ)={λeλx,0, x0 x<0
cumulative distribution function:
F ( x ) = { 1 − e − λ x ,   x ≥ 0 0 ,   x < 0 F(x) = \left\{ \begin{aligned} &1 - e^{-\lambda x}, &\ x\geq 0 \\ &0, &\ x<0 \end{aligned}\right. F(x)={1eλx,0, x0 x<0

Lemma. Y = X 1 − X 2 Y = X_1 - X_2 Y=X1X2,且 X 1 , X 2 ∼ E x p o ( λ ) X_1, X_2 \sim Expo(\lambda) X1,X2Expo(λ),则 Y ∼ L a p ( 1 λ ) Y \sim Lap(\frac{1}{\lambda}) YLap(λ1).【注意: X 1 , X 2 X_1,X_2 X1,X2 λ \lambda λ不相等时, Y Y Y并不是Laplace分布】

Proof.
f Y ( y ) = f X 1 − X 2 ( y ) = ∫ x 1 = 0 ∞ f X 1 ( x 1 ) f X 2 ( x 1 − y ) d x 1 \begin{aligned} f_Y(y) = f_{X_1 - X_2}(y) = \int_{x_1 = 0}^{\infty} f_{X_1}(x_1) f_{X_2}(x_1-y)d x_1 \end{aligned} fY(y)=fX1X2(y)=x1=0fX1(x1)fX2(x1y)dx1
考虑到 f X 2 f_{X_2} fX2时分段函数,因此上述式子需要做分类讨论。当 y ≥ 0 y\geq 0 y0时,
f Y ( y ) = ∫ x 1 = y ∞ f X 1 ( x 1 ) f X 2 ( x 1 − y ) d x 1 = ∫ x 1 = y ∞ λ e − λ x 1 λ e − λ ( x 1 − y ) d x 1 = λ e λ y ∫ x 1 = y ∞ λ e − 2 λ x 1 d x 1 = λ 2 e λ y e − 2 λ y = λ 2 e − λ y \begin{aligned} f_Y(y) =& \int_{x_1 = y}^{\infty} f_{X_1}(x_1) f_{X_2}(x_1-y)d x_1 \\ =& \int_{x_1 = y}^{\infty} \lambda e^{-\lambda x_1} \lambda e^{-\lambda(x_1 - y)}d x_1 \\ =& \lambda e^{\lambda y}\int_{x_1 = y}^{\infty}\lambda e^{-2\lambda x_1}d x_1 \\ =& \frac{\lambda}{2}e^{\lambda y} e^{-2\lambda y} \\ =& \frac{\lambda}{2}e^{-\lambda y} \end{aligned} fY(y)=====x1=yfX1(x1)fX2(x1y)dx1x1=yλeλx1λeλ(x1y)dx1λeλyx1=yλe2λx1dx12λeλye2λy2λeλy
y < 0 y<0 y<0时,
f Y ( y ) = ∫ x 1 = 0 ∞ f X 1 ( x 1 ) f X 2 ( x 1 − y ) d x 1 = ∫ x 1 = 0 ∞ λ e − λ x 1 λ e − λ ( x 1 − y ) d x 1 = λ e λ y ∫ x 1 = 0 ∞ λ e − 2 λ x 1 d x 1 = λ 2 e λ y \begin{aligned} f_Y(y) =& \int_{x_1 = 0}^{\infty} f_{X_1}(x_1) f_{X_2}(x_1-y)d x_1 \\ =& \int_{x_1 = 0}^{\infty} \lambda e^{-\lambda x_1} \lambda e^{-\lambda(x_1 - y)}d x_1 \\ =& \lambda e^{\lambda y}\int_{x_1 = 0}^{\infty}\lambda e^{-2\lambda x_1}d x_1 \\ =& \frac{\lambda}{2}e^{\lambda y} \end{aligned} fY(y)====x1=0fX1(x1)fX2(x1y)dx1x1=0λeλx1λeλ(x1y)dx1λeλyx1=0λe2λx1dx12λeλy

综上,得 f Y ( y ) = λ 2 e − λ ∣ y ∣ f_Y(y) = \frac{\lambda}{2}e^{-\lambda|y|} fY(y)=2λeλy.

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值