1019. 数字黑洞 (20)

原创 2015年07月08日 18:11:56


时间限制
100 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
CHEN, Yue

给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第1个数字减第2个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的6174,这个神奇的数字也叫Kaprekar常数。

例如,我们从6767开始,将得到

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...

现给定任意4位正整数,请编写程序演示到达黑洞的过程。

输入格式:

输入给出一个(0, 10000)区间内的正整数N。

输出格式:

如果N的4位数字全相等,则在一行内输出“N - N = 0000”;否则将计算的每一步在一行内输出,直到6174作为差出现,输出格式见样例。注意每个数字按4位数格式输出。

输入样例1:
6767
输出样例1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例2:
2222
输出样例2:
2222 - 2222 = 0000
#include <iostream>
#include <cmath>
#include <stdio.h>
using namespace std;

void Shengxu(int a[],int n);

int main(int argc, char *argv[])
{
    int n;
    while(cin>>n)
    {
        int m;
        m=n;
        if(6174==m)
        {
            cout<<"7641 - 1467 = 6174"<<endl;
        }
        while(m!=6174)
        {
        int a[4]={0};
        int i=0;
        while(m>0)
        {
            a[i]=m%10;
            m=m/10;
            i++;
        }
        int num1=0,num2=0;
        if(a[0]==a[1]&&a[1]==a[2]&&a[2]==a[3])
        {
            cout<<n<<" - "<<n<<" = "<<"0000"<<endl;
            break;
        }
        else
        {
            Shengxu(a,4);
            for(i=3;i>=0;i--)
            {
                cout<<a[i];
                num1=num1+a[i]*(int)pow(10,i);
            }
            cout<<" - ";
            for(i=0;i<4;i++)
            {
                cout<<a[i];
                num2=num2+a[i]*(int)pow(10,3-i);
            }
            cout<<" = ";
            m=num1-num2;
            printf("%04d\n",m);
        }
        }
    }
    return 0;
}
void Shengxu(int a[],int n)
{
    int i,j;
    int temp;
    int sum=0;
    for(i=0;i<n-1;i++)
    {
        for(j=0;j<n-i-1;j++)
        {
            if(a[j]>a[j+1])
            {
                temp=a[j+1];
                a[j+1]=a[j];
                a[j]=temp;
            }
        }
    }
}


版权声明:不要信了我的邪

相关文章推荐

1019. 数字黑洞 (20)

PAT 黑洞数也称为陷阱数,又称“Kaprekar问题”,是一类具有奇特转换特性的数。 任何一个各位数字不全相同的三位数,经有限次“重排求差”操作,总会得到495。最后所得的495即为三...

PAT 乙级 1019.数字黑洞(20)

1019. 数字黑洞 (20) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判...
  • flhsxyz
  • flhsxyz
  • 2017年08月04日 12:11
  • 73

1019. 数字黑洞 (20)——printf()输出位数控制

1、题目描述 给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第1个数字减第2个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞...

PAT BASIC LEVEL 1019. 数字黑洞 (20)

1019. 数字黑洞 (20) 给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第1个数字减第2个数字,将得到一个新的数字。一直重复这样做,我们很...

1019. 数字黑洞 (20)

1019. 数字黑洞 (20)

1019. 数字黑洞 (20)

给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第1个数字减第2个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的6174...

[PAT乙级]1019. 数字黑洞 (20)

1019. 数字黑洞 (20)原题链接给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第1个数字减第2个数字,将得到一个新的数字。一直重复这样做,我们...

1019. 数字黑洞 (20)

给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第1个数字减第2个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的6174...
  • GQ_BOB
  • GQ_BOB
  • 2015年09月28日 17:50
  • 226

Java - PAT - 1019. 数字黑洞 (20)

1019. 数字黑洞 (20) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN,...

浙江大学PAT_乙级_1019. 数字黑洞 (20)

c++ sort()
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:1019. 数字黑洞 (20)
举报原因:
原因补充:

(最多只允许输入30个字)