uva11137递推和DP其实有些类似

这道题大白书上是按递推讲的:

分析:建立多段图。节点(i,j)表示“使用不超过i的整数的立方,累加和为j”这个状态,设d(i,j)为从(0,0)

到(i,j)的路径条数,则最终答案为d(21,n)(因为对于题目范围,22*22*22>n)。

这个多段图的特点是每个结点一步只能走到下一个阶段的结点,因此我们可以一个阶段一个阶段的计算,

代码如下。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<stack>
#define LL long long
using namespace std;
LL d[30][10005];
int main()
{
    memset(d,0,sizeof(d));
    for(int i=0;i<=10000;i++)
        d[i]=1;
    for(int i)
    for(int i=1;i<=21;i++)
        for(int j=0;j<=10000;j++)
        for(int a=0;j+a*i*i*i<=10000;a++)
            d[i][j+a*i*i*i]+=d[i-1][j];
    int n;
    while(cin>>n)
    {
        cout<<d[21][n]<<endl;
    }
    return 0;
}
但其实这题可以当做DP来做,其实就是一个变种的完全背包:

思路:

dp[i, j]表示前i种货币表示j钱有多少种表示方法。

1. dp[i-1, j] 用前i-1种货币表示j

2. dp[i, j-v] 前i种货币表示j-v,再加上v便是必须有第i种货币来表示j

仔细发现可以压缩成一维数组 dp[i] = dp[i] + dp[i-v]。

代码:

#include <cstdio>
#include <cstdlib>
#include <cstring>

const int MAXN = 10010;
long long int dp[MAXN];
int a[30];

int main()
{
    int n;
    for (int i = 1; i <= 21; ++i)
        a[i] = i * i * i;

    while (scanf("%d", &n) != EOF)
    {
        for (int i = 0; i <= n; ++i)
            dp[i] = 1;

        for (int j = 2; j <= 21; ++j)
            for (int i = a[j]; i <= n; ++i)
                dp[i] += dp[i-a[j]];
        
        printf("%lld\n", dp[n]);
    }
    return 0;
}


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值