编辑部 发自 凹非寺
量子位 | 公众号 QbitAI
大模型浪潮下,AI与其背后的通信网络存在密不可分的联系,可以总结为Network for AI和AI for Network两层关系——
我们用网络加速AI训练推理,通过AI手段让网络变得更加安全可靠。
Network for AI,AI训练对于算力要求越来越高,从万卡集群到十万卡集群,再到百万卡集群,如何整合远距离分散的算力资源,实现规模算力跃升。
AI for Network,当前工业领域面临“如何让自己的产品变得更加智能”的问题,如何用AI改变网络,让网络更智能、更安全、更可靠,实现网络的“自动驾驶”。
在MEET2025智能未来大会上,华为NCE数据通信领域总裁王辉,为我们分享了他的看法。
为了完整体现王辉的思考,在不改变原意的基础上,量子位对演讲内容进行了编辑整理,希望能给你带来更多启发。
MEET 2025智能未来大会是由量子位主办的行业峰会,20余位产业代表与会讨论。线下参会观众1000+,线上直播观众320万+,获得了主流媒体的广泛关注与报道。
核心观点
网络与AI的关系,可以总结为Network For AI和AI For Network。我们用网络加速AI训练推理,通过AI手段让网络变得更加安全可靠。
在大模型训练方面,无阻塞网络提升大规模训练的效率。
跨远距离的算力协同,通过构建高速网络互联,把分散的算力整合成大规模算力。
在垂直行业应用AI和大模型时,面临决策实时性、推理严谨性和场景泛化性等挑战,解决问题的关键是大模型推理能力,与领域机理模型和工具的深度结合。