【第22期】观点:IT 行业加班,到底有没有价值?

二维树状数组

原创 2016年08月30日 21:49:16

刷cf的时候做到一道题,让求矩阵中任意一个子矩阵的元素之和,当时看了一下别人的题解,发现跟树状数组有点像,然后查了一下果然是树状数组,不过是二维的。这里就总结一下二维树状数组的过程。

问题:一个由数字构成的大矩阵,能进行两种操作
1) 对矩阵里的某个数加上一个整数(可正可负)
2) 查询某个子矩阵里所有数字的和,要求对每次查询,输出结果。

求任意子矩阵可以由sum(x2, y2) - sum(x1 - 1, y2) - sum(x2, y1 - 1) + sum(x1 - 1, y1 - 1)得到,这个证明我是不会的,但验证了一下是正确的,记住能用就行。注意树状数组的下标不能从0开始,必须从1开始。

下面是POJ1195的代码,一道二维树状数组的裸题。

16039476 Seasonal 1195 Accepted 4384K 485MS C++ 896B 2016-08-30 21:42:06

#include<iostream>
#include<algorithm>
using namespace std;
int n;
int map[1050][1050];

int lowbit(int x)//求出最低位的1
{
	return x&(-x);
}
void add(int x,int y,int w)
{
	for (int i = x; i <= n; i += lowbit(i))
		for (int j = y; j <= n; j += lowbit(j))
			map[i][j] += w;
}
int sum(int x, int y)
{
	int temp = 0;
	for (int i = x; i > 0; i -= lowbit(i))
		for (int j = y; j > 0; j -= lowbit(j))
			temp += map[i][j];
	return temp;
}
int getsum(int x1, int y1, int x2, int y2)//可求任意子矩阵,证明不会,但验证了一下是正确的
{
	return sum(x2, y2) - sum(x1 - 1, y2) - sum(x2, y1 - 1) + sum(x1 - 1, y1 - 1);
}

int main()
{
	int pos;
	while (scanf("%d", &pos) && pos != 3)
	{
		if (pos == 0)
		{
			scanf("%d", &n);
		}
		else if (pos == 1)
		{
			int x, y, w;
			scanf("%d%d%d", &x, &y, &w);
			add(x+1, y+1, w);
		}
		else
		{
			int x1, y1, x2, y2;
			scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
			printf("%d\n", getsum(x1+1,y1+1,x2+1,y2+1));
		}
	}
	return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

树状数组,一维,二维

树状数组 一维:百度百科:

二维树状数组练习 POJ 2029

关于二维树状数组请参看:[url]http://128kj.iteye.com/blog/1746732[/url] poj2029题意: 在一块h*w的地上,有n棵柿子树,划t*s的一块矩形地,使得其划到的柿子树最多,输出最多的数量. 样例: 16 //有多少棵树 10 8 //地的规模h*w 2 2 //(2,2)处有一棵树 2 5 2 7 3 3 3 8 4 2 4 5 4 8 6 4 6 7 7 5 7 8 8 1 8 4 9 6 10 3 4 3 //划t*s的一块地,这里是t和s 8 6 4 1
  • 128kj
  • 128kj
  • 2012-12-13 19:53
  • 714

树状数组(二维)

今天学习了一维的数组数组,就又学了学二维的树状数组,其实,二维树状数组和一维的套路差不多,就是在处理的时候有一点点不同而已。。一维树状数组更新是这样的:void add(int x,int val) ...

二维树状数组学习之一:彻底理解

当要频繁的对数组元素进行修改,同时又要频繁的查询数组内任一区间元素之和的时候,可以考虑使用树状数组. 通常对一维数组最直接的算法可以在O(1)时间内完成一次修改,但是需要O(n)时间来进行一次查询.而树状数组的修改和查询均可在O(log(n))的时间内完成. 一、回顾一维树状数组 假设一维数组为A[i](i=1,2,...n),则与它对应的树状数组C[i](i=1,2,...n)是这样定义的: C1 = A1 C2 = A1 + A2 C3 = A3 C4 = A1 + A2 + A3 + A4 C5 = A5 C6 = A5 + A6
  • 128kj
  • 128kj
  • 2012-12-12 20:54
  • 958

二维树状数组

回顾一维树状数组初始化、求和c1 = a1; c2 = a1 + a2; c3 = a3; c4 = a1 + a2 + a3 + a4; c5 = a5; c6 = a5 + a6; …...
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)