关闭

HDU The 3n + 1 problem

标签: ACM数论HDU水题
170人阅读 评论(0) 收藏 举报
Problem Description
Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.
Consider the following algorithm:
1. input n
2. print n
3. if n = 1 then STOP
4. if n is odd then n <- 3n + 1
5. else n <- n / 2
6. GOTO 2
Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)
Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.
For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.
Input
The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.
You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.
You can assume that no opperation overflows a 32-bit integer.
Output
For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).
Sample Input
1 10
100 200
201 210
900 1000
Sample Output
1 10 20
100 200 125
201 210 89

900 1000 174


这一题关键在于输入m,n当m<n交换m,n的值,但输出的还得按原来的顺序输出。

这一题我就按题目的意思,没有任何优化什么的就过了,可能测试数据不给力,还是说每个数的cycle length都不会太长?


AC代码:


# include <cstdio> 
using namespace std;

int cal(int n){//计算cycle length
	int cnt=1;
	while(n!=1){
		if(n%2==0){
			n=n/2;
		}
		else{
			n=3*n+1;
		}
		cnt++;
	}
	return cnt;
}
int main(){
	int i, j, k, n, m, n1, m1, temp;
	int ans;
	while(scanf("%d%d", &m, &n)!=EOF){
		ans=-2000000000;
         	m1=m;n1=n;
		if(m>n){
			temp=m;m=n;n=temp;
		}
		for(i=m; i<=n; i++){
			if((temp=cal(i))>ans){
				ans=temp;
			}
		}
		printf("%d %d %d\n", m1, n1, ans);
	}
	return 0;
}

以下是改进版,虽然oj上的时间都是0,但是以下按理说更快才对;


AC代码:


# include <iostream>                           
# include <algorithm>
# include <map>
using namespace std;
map<int, int> M;
int cal(int n){
    if(M[n]){
    	return M[n];
	}
	else{
		if(n%2==0){
			return M[n]=cal(n/2)+1;
		}
		else{
			return M[n]=cal(3*n+1)+1;
		}
	}
}
int main(){
    int i, j, k, m, n, m1, n1, ans, temp;
    M[1]=1;
    while(scanf("%d%d", &m, &n)!=EOF){
    	ans=-2000000000;
    	m1=m;n1=n;
    	if(m>n)
    	swap(m, n);
    	for(i=m; i<=n; i++){
    		if((temp=cal(i))>ans){
    			ans=temp;
			}
		}
		printf("%d %d %d\n", m1, n1, ans);
	}
	return 0;
}




0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:55493次
    • 积分:2597
    • 等级:
    • 排名:第15536名
    • 原创:211篇
    • 转载:0篇
    • 译文:0篇
    • 评论:8条
    文章分类
    最新评论